Table of contents

Abstract .. 2
Introduction ... 2
HP Power Regulator .. 2
HP Power Capping ... 5
Power monitoring with HP iLO 4 .. 5
Power Capping Demonstration with HP iLO 4 .. 6
HP Insight Power Manager ... 8
ProLiant Power Management with RHEL 6.1 .. 8
Collaborative Power Control with RHEL 6.1 ... 9
Idle Power States (C-States) with RHEL 6.1 .. 10
Additional RHEL 6.1 Power Management Features .. 11
Summary ... 12
For more information ... 13
Call to action .. 14
Abstract

Power management is crucial to data center power provisioning. This document provides a brief overview of the processor-based power saving features supported on HP ProLiant servers and the power management features such as Power Regulator, Power Capping and Collaborative Power Control that are embedded in the ProLiant platforms. This document also discusses how these features are used and their relationship to the Red Hat Enterprise Linux (RHEL) 6.1 operating system, including new features available with ProLiant Gen8 Intel-based servers and RHEL 6.1.

Introduction

The RHEL 6.1 operating system and the HP ProLiant servers together use processor-based features to achieve better power efficiency for processors. The processor-based features include:

- **Performance states (P-states)** define a set of fixed operating frequencies and voltages, where P0 represents the highest operating frequency and voltage. You can save power by entering P-states with lower frequency and voltage levels. Either the platform firmware or the operating system controls the P-states.
- **Power states (C-states)**, excluding the C0 state, represent idle states and determine the power consumed when a processor is idle. C0 is a non-idle state with higher C-states representing idle conditions with increasing power savings. The operating system controls the C-states.
- **Throttle states (T-states)** define a set of fixed frequency percentages which can be used to regulate the power consumption and the thermal properties of the processor. ProLiant systems may reserve the use of T-states for the system firmware.

In addition, ProLiant servers are also capable of utilizing the various processor states to support innovative power management features that are operating system independent and are implemented in the hardware and firmware:

- **HP Power Regulator** provides a facility to efficiently control processor power usage and performance, either statically or dynamically depending on the mode selected.
- **HP Power Capping** allows an administrator to limit the power consumed by a server.
- **HP Dynamic Power Capping** has the additional feature of ensuring that the power limit set by an administrator is maintained by reacting to a spike in server workload more rapidly than basic HP Power Capping.

The Power Regulator and Power Capping technologies are designed to work in conjunction with each other. To make the operating system aware of Power Capping, HP provides the Collaborative Power Control technology. This is a two-way communication mechanism established between the operating system and platform firmware, and can be used by the operating system and hardware collaboratively to choose the appropriate performance level for the server. Support for this technology is present in both RHEL 6.1 and on ProLiant Gen8 servers.

HP Power Regulator

HP Power Regulator is a configurable processor power usage feature which allows you to choose from several options for the server to manage P-states or to delegate control of regulating P-states to the operating system.
HP Power Regulator is implemented within the firmware on both Intel-based and AMD-based ProLiant servers.\(^1\) ProLiant servers provide the following HP Power Regulator modes, that you can select from the ROM Based Setup Utility (RBSU) or through HP iLO 4:

HP Dynamic
The firmware is capable of managing the P-states. However, when the Collaborative Power Control (CPC) setting is enabled in RBSU, the OS and the firmware collaborate to attain the desired frequency for a processor. When CPC is disabled, this mode allows the firmware to exclusively control the P-states of a processor to match the server load. On HP ProLiant Gen8 servers, HP Dynamic is the default mode with the CPC setting enabled.

HP Static Low
The firmware controls the P-states. The P-state of the processor is static and it is set to the P-state which corresponds to the lowest operating frequency supported by the processor.

HP Static High
The firmware controls the P-states. The P-state of the processor is static and it is set to P0 which corresponds to the highest operating frequency supported by the processor.

OS Control
The RHEL 6.1 operating system controls the P-states and it manages the P-states according to the policy set by the administrator via the OS.

For the HP Static Low and HP Static High modes above, you are advised to disable CPC to ensure that the firmware has exclusive control of the P-states. CPC is located within the Advanced Power Management Options in RBSU. This causes RHEL 6.1 to report in the `/var/log/messages` file and in the `dmesg` output that CPU frequency scaling is not utilized on the server.

The OS Control mode allows the ProLiant platform firmware to delegate the duty of managing P-states to the RHEL 6.1 operating system.

You can adjust the Power Regulator Settings through the RBSU or the HP iLO 4 interface as shown in Figure 1. You must reboot the system to change the transitions to and from the OS Control mode but you can change the system between the other three modes dynamically.

\(^1\) For detailed information on HP Power Regulator support across the different generations of ProLiant platforms, see: http://h18013.www1.hp.com/products/servers/management/ilosup_servers.html
To adjust the CPC setting, you have to access RBSU as shown in Figure 2. Modifying this setting requires a system reboot to take effect.

For more information on HP Power Regulator technology, see:
HP Power Capping

Power Capping satisfies data center power provisioning requirements by allowing the data center administrator to provide a power budget to a single-server or a group of servers. The ProLiant platform enforces that limit by changing the processor P-states and T-states in an operating system independent manner. Power Capping is independent of the HP Power Regulator setting and can occur in any setting. When server power is being capped under OS Control mode, the firmware overrides the power management instructions from the operating system for the duration of the capping.

As shown in Figure 1, you can use HP iLO 4 to configure a power cap. HP iLO displays important information about maximum available power for the power supply, the peak observed power, and the minimum observed power for the server. With this information, you can select an appropriate power cap, either by specifying the absolute maximum watts or a percentage of the maximum observed power of the server.

For more information on Power Capping, see:
http://www.hp.com/go/dpc

For an in-depth presentation on the Power Capping technology, see:

Power monitoring with HP iLO 4

HP iLO 4 supports the facility to monitor current power consumption along historical timelines. As shown in Figure 3, HP iLO 4 displays the current power consumption as well as the peak and average power consumption for the past 24-hour and 20-minute time periods.
Power Capping Demonstration with HP iLO 4

This section demonstrates the HP Power Capping functionality by increasing workload on a ProLiant server under the RHEL 6.1 operating system. Figure 4 displays the iLO configuration setting for a server where the capping threshold is set to 180 watts. This means the maximum power consumption will be limited at approximately 180 watts. Figure 5 shows that when power capping is not set, the power consumption of a server increases when there is an increase in workload. You can also see that the maximum power was 227 watts while the minimum power was 209 watts in the past 5 minutes. The average power was 213 watts. Figure 6 demonstrates that when capping is enabled, the platform limits the power consumption to 180 watts even with an increase in workload in order to satisfy the power budget set by the user.
Figure 4: HP Power Capping threshold configuration

Figure 5: Power consumption without capping
HP Insight Power Manager

HP Insight Power Manager (IPM) is an integrated power monitoring and management application that provides centralized control of server power consumption and thermal output at the data center level. With IPM, users can change the power cap settings on groups of servers at a time. IPM is a plug-in for the HP Systems Insight Manager (SIM) that monitors and controls HP ProLiant and HP Integrity servers throughout the data center.

For more information on IPM, see: http://h18000.www1.hp.com/products/servers/management/ipm/index.html

For more information on SIM, see: www.hp.com/go/sim

ProLiant Power Management with RHEL 6.1

RHEL 6.1 manages the power usage of ProLiant servers by adjusting the processor P-states when the HP Power Regulator setting in RBSU is configured in OS Control mode. Typically within the Linux operating system, a governor dictates the policy, while the actual P-state transition is accomplished by a suitable P-state driver. RHEL 6.1 offers a choice of governors, each implementing a different policy ranging from userspace, which enables the user space program (cpuspeed) to directly configure the processor frequency, to performance, which selects the P-state corresponding to the highest supported frequency. The default governor is the ondemand governor, which dynamically adjusts the processor P-states to match the load on the server.

On Intel-based ProLiant platforms RHEL 6.1 natively supports the Intel Demand Based Switching with Enhanced Intel SpeedStep ® Technology. On AMD-based ProLiant platforms, RHEL 6.1 supports
AMD’s PowerNow! technology. The following table lists the P-state driver on Intel-based and AMD-based ProLiant G6, G7 or later platforms under OS Control mode.

<table>
<thead>
<tr>
<th>Processor Family</th>
<th>P-state driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel® Xeon®</td>
<td>acpi-cpufreq</td>
</tr>
<tr>
<td>AMD Opteron™</td>
<td>powernow-k8</td>
</tr>
</tbody>
</table>

In order for RHEL 6.1 to manage the power consumption of the processor, the firmware must communicate information about the processor P-states and their associated frequencies to the OS. You can find this information in the file and directories under /sys/devices/system/cpu.

Included in the RHEL 6.1 media is the cpufreq-util command (installed via the cpufrequtils-007-5.el6.i686.rpm package) that provides information about the P-states of the processors in the system in a user-friendly format. When used without arguments, cpufreq-info displays information about all processor cores, including the P-state driver, the frequency range supported by the processor, the available frequency steps (which are the P-states), the available and current governors, and the current frequency. Example 1 shows how cpufreq-info also supports options to display information specific to a CPU.

```
Example 1 Output for CPU 0 in OS Control mode

# cpufreq-info -c 0

cpufrequtils 007: cpufreq-info (C) Dominik Brodowski 2004-2009
Report errors and bugs to cpufreq@vger.kernel.org, please.
analyzing CPU 0:

driver: acpi-cpufreq
CPUs which run at the same hardware frequency: 0
CPUs which need to have their frequency coordinated by software: 0
maximum transition latency: 10.0 us.

hardware limits: 1.20 GHz - 2.00 GHz

available frequency steps: 2.00 GHz, 2.00 GHz, 1.90 GHz, 1.80 GHz, 1.70 GHz, 1.60 GHz, 1.50 GHz, 1.40 GHz, 1.30 GHz, 1.20 GHz

available cpufreq governors: ondemand, userspace, performance
current policy: frequency should be within 1.20 GHz and 2.00 GHz.
The governor "ondemand" may decide which speed to use within this range.
current CPU frequency is 1.20 GHz.
```

You can dynamically change the governor used under the OS Control mode by modifying the value in the /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor file for each CPU. RHEL 6.1 provides the cpufreq-set command to select the governor. For more information about the cpufreq-util and cpufreq-set commands, refer to the RHEL 6.1 man pages.

Collaborative Power Control with RHEL 6.1

When ProLiant servers are under OS Control mode for power management, power capping may still be imposed by the platform without the knowledge of the operating system. First introduced on Intel-based G6 ProLiant servers and included in all Gen8 ProLiant servers is the ability for the server and the OS to collaborate on power management. HP provides the Collaborative Power Control (CPC) mechanism which is capable of providing capping related feedback to the operating system, as well as collaborating with the operating system in managing the power consumption of a server. This combination provides the quick response time of HP Dynamic Power Savings and still provides correct processor power information to the operating system.
CPC utilizes the Processor Clocking Control (PCC) interface which is an interface for coordinating processor performance between the platform firmware and the operating system. The PCC interface, jointly developed by HP and Microsoft is publicly available, allowing other platform vendors the option of implementing it.

For more information on PCC, see:
http://www.acpica.org/download/Processor-Clocking-Control-v1p0.pdf

Platform firmware releases for Intel-based ProLiant G6 servers from August 2009 and later include support for CPC.

When a CPC-enabled server is configured in HP Dynamic mode, the firmware does not present P-state information to the operating system. Instead, the firmware presents the minimum and maximum frequencies the processor supports, allowing the OS to pick any frequency within that range, rather than restricting the processor to specific P-states. As with OS Control mode, the operating system governor provides policy and requests through the new PCC driver (pcc-cpufreq) in RHEL 6.1 what performance is required from the processor. The platform firmware strives to honor the requested frequency. If the processor is capped at that time for any reason, then the platform firmware will inform the OS that the request could not be accomplished due to capping. When capping is not configured, the PCC driver still continues to function in lieu of the P-state driver. Example 2 shows a sample output for CPU 0 for a Gen8 server under RHEL 6.1. In this example, notice that the driver is pcc-cpufreq. Only the minimum and maximum frequency limits are displayed. Unlike under OS Control, there are no preset frequency steps.

Example 2 Output for CPU 0 in HP Dynamic mode with CPC enabled

```
# cpufreq-info -c 0

cpufrequtils 007: cpufreq-info (C) Dominik Brodowski 2004-2009
Report errors and bugs to cpufreq@vger.kernel.org, please.
analyzing CPU 0:
  driver: pcc-cpufreq
  CPUs which run at the same hardware frequency: 0
  CPUs which need to have their frequency coordinated by software: 0
  maximum transition latency: 0.00 ms.
  hardware limits: 1.20 GHz - 2.00 GHz
  available cpufreq governors: ondemand, userspace, performance
  current policy: frequency should be within 1.20 GHz and 2.00 GHz.
    The governor "ondemand" may decide which speed to use within this range.
  current CPU frequency is 1.20 GHz.
```

Idle Power States (C-States) with RHEL 6.1

Processor power use at idle is a crucial factor in determining power consumption of a server when there is no workload to execute. Typically, when a processor does not have work to perform, the operating system places the processor in a halt state signified as C1. Newer generation processors support deep C-states, allowing RHEL 6.1 to take advantage of these states. Although C-states can significantly reduce power consumption, the drawback of going to a deeper C-state is the latency associated with the time it takes for the processor to wake up from its idle state and resume executing instructions. Information about the C-states for system processors is available in /sys/devices/system/cpu/cpu*/cpuidle/state*.
NOTE: You can configure the server to not utilize the idle C-states by choosing the No C-states setting in RBSU.

Additional RHEL 6.1 Power Management Features

RHEL 6.1 provides a comprehensive set of features for managing the power usage of ProLiant servers. The “Green IT” features introduced in RHEL6.0 and later offer the user a range of kernel and user-space features to manage server power consumption. With the “tickless when idle” kernel feature, it is possible to reduce the number of wakeups per seconds from 1024 to typically less than 30. For instance, in Figure 7, notice that the “Wakeups-from-idle per second” is below 23. Additional tools are available to monitor the system power consumption. For example, utilizing the powerTOP tool, you can identify processes that are most responsible for waking a processor up from its idle state and thereby driving up power consumption. Reference the powerTOP documentation for further reading on what the output of powerTOP represents, and for tips and tricks on how to best tune the server for maximum power savings.

Figure 7 displays the powerTOP output on an idle 1P ProLiant DL360e Gen8 platform with Intel(R) Xeon(R) CPU E5-2420 processor and 2 GB system memory. The average residency in the deepest supported C-state is about 49ms. This value is due to the processor being awakened about once every 23 per second from its idle state. The output listing is for a case where the IPMI service has been stopped on the server.

3 Red Hat Enterprise Linux 6: Green Computing Features
4 ACPI C3 actually corresponds to hardware C6 state which is the deepest C-state supported by the processors on that platform
5 Halting the IPMI driver results in a user losing the ability to remotely monitor the server. If the IPMI service is stopped in order to save power, it is possible to resume the IPMI service with the command service ipmi restart
NOTE: You can see the P-states (frequencies) information in the powerTOP output only when the HP Power Regulator is configured to OS Control mode.

Summary

HP ProLiant servers are enabled for saving power both when the server is under load and when the server is idle. The processor-based power management features when supported in the hardware are enabled by the firmware automatically, and are used in close co-ordination between the firmware and the RHEL 6.1 operating system. Typically, you do not have to activate these features. They are already enabled by default. Several innovative features such as the HP Power Regulator, HP Power Capping, HP Dynamic Power Capping, and Collaborative Power Control provide advanced power saving and budgeting features on HP ProLiant servers.
For more information

For additional information, refer to the resources listed below.

<table>
<thead>
<tr>
<th>Resource description</th>
<th>Web address</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP ProLiant Gen8</td>
<td>www.hp.com/go/proliantgen8</td>
</tr>
<tr>
<td>HP Linux documentation</td>
<td>www.hp.com/go/linux-docs, select HP Linux Server Management Software.</td>
</tr>
<tr>
<td>Power Regulator</td>
<td>http://www.hp.com/servers/power-regulator</td>
</tr>
<tr>
<td>Enhanced Intel SpeedStep® Technology and Demand Based Switching on Linux</td>
<td>http://softwarecommunity.intel.com/articles/eng/1611.htm</td>
</tr>
<tr>
<td>Linux cpufreq kernel documentation</td>
<td>http://lxr.linux.no/linux+v2.6.32/Documentation/cpu-freq/</td>
</tr>
<tr>
<td>Linux cpuidle kernel documentation</td>
<td>http://lxr.linux.no/linux+v2.6.32/Documentation/cpuidle/</td>
</tr>
<tr>
<td>Intelligent Platform Management Interface (IPMI)</td>
<td>http://www.intel.com/design/servers/ipmi/</td>
</tr>
<tr>
<td>HP Insight Power Manager (IPM)</td>
<td>http://www.hp.com/go/ipm</td>
</tr>
<tr>
<td>HP System Insight Manager (SIM)</td>
<td>http://www.hp.com/go/sim</td>
</tr>
<tr>
<td>LessWatts</td>
<td>http://www.lesswatts.org/</td>
</tr>
<tr>
<td>Linux on HP ProLiant servers</td>
<td>http://www.hp.com/go/proliantlinux</td>
</tr>
<tr>
<td>Processor Clocking Control (PCC) interface</td>
<td>http://www.acpica.org/download/Processor-Clocking-Control-v1p0.pdf</td>
</tr>
<tr>
<td>Kernel documentation on the Linux PCC implementation</td>
<td>http://lxr.linux.no/linux+v2.6.34/Documentation/cpu-freq/pcc-cpufreq.txt</td>
</tr>
<tr>
<td>Introduction to PCC as presented at the Linux Foundation Collaboration Summit (LFCS)</td>
<td>https://events.linuxfoundation.org/slides/lfc2010_qarbee.pdf</td>
</tr>
</tbody>
</table>
Call to action

Send comments about this document to TechCom@HP.com