Key features

• Up to 5 Mpps forwarding performance; support for multiple concurrent services
• HPE Open Application Platform (OAP) for HPE AllianceOne applications
• Embedded security features with hardware-based encryption, stateful firewall, network address translation (NAT), and virtual private networks (VPNs)
• No additional licensing complexity; no cost for advanced features
• Zero-touch solution, with single-pane-of-glass management

Product overview

The HPE MSR3000 Router Series, the next generation of router from Hewlett Packard Enterprise (HPE), is a component of the HPE FlexBranch solution, which is a part of the comprehensive HPE FlexNetwork architecture. These routers feature a modular design that delivers unmatched application services for medium- to large-sized branch offices. This gives your IT personnel the benefit of reduced complexity, and simplified configuration, deployment, and management.

The MSR3000 routers use the latest multicore CPUs, offer Gigabit switching, provide an enhanced PCI bus, and ship with the latest version of HPE Comware software to help enable high performance with concurrent services. The MSR3000 series provides a full-featured, resilient routing platform, including IPv6 and Multi-Protocols Label Switching (MPLS), with up to 5 Mpps forwarding capacity and 3.3 Gb/s of IPSec VPN encrypted throughput. These routers also support HPE Open Application Platform (OAP) modules to deliver integrated industry-leading HPE AllianceOne partner applications such as virtualization, unified communications and collaboration (UC&C), and application optimization capabilities.

The MSR3000 series provides an agile, flexible network infrastructure that enables you to quickly adapt to changing business requirements while delivering integrated concurrent services on a single, easy-to-manage platform.
Features and benefits

Performance

• Excellent forwarding performance
 Provides forwarding performance up to 5 Mpps (3.3 Gb/s) ; meets the bandwidth-intensive application demands of enterprise businesses

• Powerful security capacity
 The MSR3000 series is available with standard or high encryption, an embedded hardware encryption accelerator to improve encryption performance; IPSec encryption throughput can be up to 3.3 Gb/s with a maximum of 4,000 IPSec VPN tunnels

Product architecture

• SDN/OpenFlow
 OpenFlow is the communications interface defined between the control and forwarding layers of a SDN (Software-Defined Networking) architecture. OpenFlow separates the data forwarding and routing decision functions. It keeps the flow-based forwarding function and employs a separate controller to make routing decisions. OpenFlow matches packets against one or more flow tables. MSR support OpenFlow 1.3.1

• Ideal multiservice platform
 Provides WAN router, Ethernet switch, 3G/4G WAN, stateful firewall, VPN, and Session Initiation Protocol (SIP) or voice gateway on MSRs

• Advanced hardware architecture
 Provides multicore processors, Gigabit switching, and PCIe bus; external RPS or dual internal power supplies, and internal and external CF cards are offered; new high-performance MIM modules (HMIM) supported

• New operating system
 Ships with new Comware v7 Operating System delivering the latest in virtualization and routing

• Open Application Platform architecture
 Provides unmatched application and services flexibility, with the potential to deliver the functionality of multiple devices, creating capital and operational expense savings and lasting investment protection

• Field-programmable gate array (FPGA)
 Improves the bandwidth of I/O module slots from 100 Mb/s to 1000 Mb/s, and improves uplink performance from 1 Gb/s to 10 Gb/s

• Multi Gigabit Fabric (MGF)
 Eases utilization of the main processor by transmitting Layer 2 packets directly via the MGF

Connectivity

• Ethernet Virtual Interconnect (EVI)
 EVI is a MAC-in-IP technology that provides Layer 2 connectivity between distant Layer 2 network sites across an IP routed network. It is used for connecting geographically dispersed sites of a virtualized large-scale data center that requires Layer 2 adjacency.

• VXLAN (Virtual eXtensible LAN)
 VXLAN (Virtual eXtensible LAN, scalable virtual local area network) is an IP-based network, using the “MAC in UDP” package of Layer VPN technology. VXLAN can be based on an existing ISP or enterprise IP networks for decentralized physical site provides Layer 2 communication, and can provide service isolation for different tenants.
• Virtual Private LAN Service (VPLS)

Virtual Private LAN Service (VPLS) delivers a point-to-multipoint L2VPN service over an MPLS or IP backbone. The backbone is transparent to the customer sites, which can communicate with each other as if they were on the same LAN. The following protocols support on MSRs, RFC 4447, RFC 4761, and RFC 4762, BFD detection in VPLS, Support hierarchical HOPE (H-VPLS), MAC address recovery in H-VPLS to speed up convergence.

• Network Mobility (NEMO)

Network mobility (NEMO) enables a node to retain the same IP address and maintain application connectivity when the node travels across networks. It allows location-independent routing of IP datagrams on the Internet.

• High-density port connectivity

Provides up to 10 interface module slots and up to three on-board Gigabit Ethernet ports, 8 or 24 ports GE supported on one HMIM module.

• Multiple WAN interfaces

Provides traditional links with E1, T1, Serial, ADSL over POTS, ADSL over ISDN, G.SHDSL, Asynchronous Transfer Mode (ATM), and ISDN links; high-density Ethernet access with WAN Gigabit Ethernet and LAN 4- and 9-port Fast/Giga Ethernet, PoE/PoE+, mobility access with 3G (WCDMA or HSPA) /4G LTE SIC modules, and 3G/4G USB modems, and high-speed E3/T3 and 155 Mb/s OC3 access options.

• Packet storm protection

Protects against broadcast, multicast, or unicast storms with user-defined thresholds.

• Loopback

Supports internal loopback testing for maintenance purposes and an increase in availability; loopback detection protects against incorrect cabling or network configurations and can be enabled on a per-port or per-VLAN basis for added flexibility.

• 3G/4G LTE access support

Provides 3G/4G LTE wireless access for primary or backup connectivity via a 3G/4G LTE SIC module certified on various cellular networks; optional carrier 3G/4G LTE USB modems are available.

• USB interface

Uses USB memory disk to download and upload configuration or OS image files; supports an external USB 3G/4G modem for a 3G/4G WAN uplink.

• Flexible port selection

Provides a combination of fiber and copper interface modules, 100/1000BASE-X support, and 10/100/1000BASE-T auto-speed detection plus auto duplex and MDI/MDI-X.

Layer 2 switching

• Spanning Tree Protocol (STP)

Supports standard IEEE 802.1D STP, IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) for faster convergence, and IEEE 802.1s Multiple Spanning Tree Protocol (MSTP).

• Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) protocol snooping

Controls and manages the flooding of multicast packets in a Layer 2 network.

• Port mirroring

Duplicates port traffic (ingress and egress) to a local or remote monitoring port.
• VLANs
 Supports up to 4,094 VLANs or IEEE 802.1Q-based VLANs
• sFlow®
 Allows traffic sampling
• Define port as switched or routed
 Supports command switch to easily change switched ports to routed (maximum of four Fast Ethernet ports)

Layer 3 routing
• Static IPv4 routing
 Provides simple manually configured IPv4 routing
• Routing Information Protocol (RIP)
 Uses a distance vector algorithm with User Datagram Protocol (UDP) packets for route determination, supports RIPv1 and RIPv2 routing, includes loop protection
• Open shortest path first (OSPF)
 Delivers faster convergence; uses this link-state routing Interior Gateway Protocol (IGP), which supports ECMP, NSSA, and MD5 authentication for increased security and graceful restart for faster failure recovery
• Border Gateway Protocol 4 (BGP-4)
 Delivers an implementation of the Exterior Gateway Protocol (EGP) utilizing path vectors; uses TCP for enhanced reliability for the route discovery process; reduces bandwidth consumption by advertising only incremental updates; supports extensive policies for increased flexibility; scales to very large networks
• Intermediate system to intermediate system (IS-IS)
 Uses a path vector Interior Gateway Protocol (IGP), which is defined by the ISO organization for IS-IS routing and extended by IETF RFC 1195 to operate in both TCP/IP and the OSI reference model (Integrated IS-IS)
• Static IPv6 routing
 Provides simple manually configured IPv6 routing
• Dual IP stack
 Maintains separate stacks for IPv4 and IPv6 to ease the transition from an IPv4-only network to an IPv6-only network design
• Routing Information Protocol next generation (RIPng)
 Extends RIPv2 to support IPv6 addressing
• OSPFv3
 Provides OSPF support for IPv6
• BGP+
 Extends BGP-4 to support Multi-protocol BGP (MBGP), including support for IPv6 addressing
• IS-IS for IPv6
 Extends IS-IS to support IPv6 addressing
IPv6 tunneling

Allows IPv6 packets to traverse IPv4-only networks by encapsulating the IPv6 packet into a standard IPv4 packet; supports manually configured, 6 to 4, and Intra-Site Automatic Tunnel Addressing Protocol (ISATAP) tunnels; is an important element for the transition from IPv4 to IPv6

Multi-protocol Label Switching (MPLS)

Uses BGP to advertise routes across Label Switched Paths (LSPs), but uses simple labels to forward packets from any Layer 2 or Layer 3 protocol, which reduces complexity and increases performance; supports graceful restart for reduced failure impact; supports LSP tunneling and multilevel stacks

Multi-protocol Label Switching (MPLS) Layer 3 VPN

Allows Layer 3 VPNs across a provider network; uses Multi-protocol BGP (MBGP) to establish private routes for increased security; supports RFC 2547bis multiple autonomous system VPNs for added flexibility; supports IPv6 MPLS VPN

Multi-protocol Label Switching (MPLS) Layer 2 VPN

Establishes simple Layer 2 Point-to-Point VPNs across a provider network using only MPLS Label Distribution Protocol (LDP); requires no routing and therefore decreases complexity, increases performance, and allows VPNs of non-routable protocols; uses no routing information for increased security; supports Circuit Cross Connect (CCC), Static Virtual Circuits (SVCs), Martini draft, and Kompella-draft technologies

Routing policy

Allows custom filters for increased performance and security; supports access control lists (ACLs), IP prefix, AS paths, community lists, and aggregate policies

Layer 3 services

NAT-PT

Network Address Translation—Protocol Translation (NAT-PT) enables communication between IPv4 and IPv6 nodes by translating between IPv4 and IPv6 packets. It performs IP address translation, and according to different protocols, performs semantic translation for packets. This technology is only suitable for communication between a pure IPv4 node and a pure IPv6 node.

WAN Optimization

MSR performs optimization using TFO and a combination of DRE, Lempel-Ziv (LZ) compression to provide the bandwidth optimization for file service and Web applications. The policy engine module determines which traffic can be optimized and which optimization action should be taken. A pair of WAN optimization equipment can discover each other automatically and complete the negotiation to establish a TCP optimization session.

Address Resolution Protocol (ARP)

Determines the MAC address of another IP host in the same subnet; supports static ARPs; gratuitous ARP allows detection of duplicate IP addresses; proxy ARP allows normal ARP operation between subnets or when subnets are separated by a Layer 2 network

User Datagram Protocol (UDP) helper

Redirects UDP broadcasts to specific IP subnets to prevent server spoofing

Dynamic Host Configuration Protocol (DHCP)

Simplifies the management of large IP networks and supports client and server; DHCP Relay enables DHCP operation across subnets
Quality of Service (QoS)
- Traffic policing
 Supports Committed Access Rate (CAR) and line rate
- Congestion management
 Supports FIFO, PQ, CQ, WFQ, CBQ, and RTPO
- Weighted random early detection (WRED) or random early detection (RED)
 Delivers congestion avoidance capabilities through the use of queue management algorithms
- Hierarchical quality of service (HfQoS) or Nested QoS
 Manages traffic uniformly, and hierarchically schedules traffic by user, network service, and application; provides more granular traffic control and quality assurance services than traditional QoS
- Other QoS technologies
 Support traffic shaping, MPLS QoS, MP QoS or LFI, and Control Plane Policing (CoPP)

Security
- IPS
 Built-in Intrusion Prevention System (IPS) detects and protects the branch office from security threats. Optional HPE integration filters for client-side, branch protection from exploits and vulnerabilities
- Zone based firewall
 Zone-Based Policy Firewall changes the firewall configuration from the older interface-based model to a more flexible, more easily understood zone-based model. Interfaces are assigned to zones, and inspection policy is applied to traffic moving between the zones. Inter-zone policies offer considerable flexibility and granularity, so different inspection policies can be applied to multiple host groups connected to the same router interface.
- Enhanced stateful firewall
 Application layer protocol inspection, Transport layer protocol inspection, ICMP error message check, and TCP SYN check. Support more L4 and L7 protocols like TCP, UDP, UDP-Lite, ICMPv4/ICMPv6, SCTP, DCCP, RAWIP, HTTP, FTP, SMTP, DNS, SIP, H.323, SCCP.
- Auto Discover VPN (ADVPN)
 Collects, maintains, and distributes dynamic public addresses through the VPN Address Management (VAM) protocol, making VPN establishment available between enterprise branches that use dynamic addresses to access the public network; compared to traditional VPN technologies, ADVPN technology is more flexible and has richer features, such as NAT traversal of ADVPN packets, AAA identity authentication, IPSec protection of data packets, and multiple VPN domains
- IPSec VPN
 Supports DES, Triple DES (3DES), and Advanced Encryption Standard (AES) 128/192/256 encryption, and MD5 and SHA-1 authentication
- Access control list (ACL)
 Supports powerful ACLs for both IPv4 and IPv6; ACLs are used for filtering traffic to prevent unauthorized users from accessing the network, or for controlling network traffic to save resources; rules can either deny or permit traffic to be forwarded; rules can be based on a Layer 2 header or a Layer 3 protocol header; rules can be set to operate on specific dates or times
- Terminal Access Controller Access-Control System (TACACS+)
 Delivers an authentication tool using TCP with encryption of the full authentication request, providing additional security
• Unicast Reverse Path Forwarding (URPF)
 Allows normal packets to be forwarded correctly, but discards the attaching packet due to lack of reverse path route or incorrect inbound interface; prevents source spoofing and distributed attacks

• Network login
 Allows authentication of multiple users per port

• RADIUS
 Eases security access administration by using a user or password authentication server

• Network address translation (NAT)
 Supports one-to-one NAT, many-to-many NAT, and NAT control, enabling NAPT to support multiple connections; supports blacklist in NAT, a limit on the number of connections, session logs, and multi-instances

• Secure Shell (SSHv2)
 Uses external servers to securely login to a remote device; with authentication and encryption, it protects against IP spoofing and plain text password interception; increases the security of Secure File Transfer Protocol (SFTP) transfers

Convergence
• Internet Group Management Protocol (IGMP)
 Utilizes Any-Source Multicast (ASM) or Source-Specific Multicast (SSM) to manage IPv4 multicast networks; supports IGMPv1, v2, and v3

• Protocol Independent Multicast (PIM)
 Defines modes of Internet IPv4 and IPv6 multicasting to allow one-to-many and many-to-many transmission of information; supports PIM Dense Mode (DM), Sparse Mode (SM), and Source-Specific Mode (SSM)

• Multicast Source Discovery Protocol (MSDP)
 Allows multiple PIM-SM domains to interoperate; is used for inter-domain multicast applications

• Multicast Border Gateway Protocol (MBGP)
 Allows multicast traffic to be forwarded across BGP networks and kept separate from unicast traffic

Integration
• Embedded NetStream
 Improves traffic distribution using powerful scheduling algorithms, including Layer 4 to 7 services; monitors the health status of servers and firewalls

• Embedded VPN and stateful firewall
 Provides enhanced stateful packet inspection and filtering, delivers advanced VPN services with Triple DES (3DES) and Advanced Encryption Standard (AES) encryption at high performance and low latency, URL filtering, and application prioritization and enhancement

• SIP trunking
 Delivers multiple concurrent calls on one link; the carrier authenticates only the link, rather than carrying each SIP call on the link
Resiliency and high availability

- Intelligent Resilient Framework (IRF)
 Intelligent Resilient Framework (IRF), allows the customer build an IRF stack, namely a logical device, by interconnecting multiple devices through stack ports. The customer can manage all the devices in the IRF stack by managing the logical device, which is cost-effective like a box-type device, and scalable and highly reliable like a chassis-type distributed device.

- Backup center
 Acts as a part of the management and backup function to provide backup for device interfaces; delivers reliability by switching traffic over to a backup interface when the primary one fails

- Virtual Router Redundancy Protocol (VRRP)
 Allows groups of two routers to dynamically back each other up to create highly available routed environments; supports VRRP load balancing

- Embedded Automation Architecture (EAA)
 Monitors the internal event and status of system hardware and software, identifying potential problems as early as possible; collects field information and attempts to automatically repair the issues; based on the user configuration, onsite information will be sent to technical support

- Bidirectional Forwarding Detection (BFD)
 Detects quickly the failures of the bidirectional forwarding paths between two devices for upper-layer protocols such as routing protocols and MPLS

Management

- HPE Intelligent Management Center (IMC)
 Integrates fault management, element configuration, and network monitoring from a central vantage point; built-in support for third-party devices enables network administrators to centrally manage all network elements with a variety of automated tasks, including discovery, categorization, baseline configurations, and software images; the software also provides configuration comparison tools, version tracking, change alerts, and more

- Industry-standard CLI with a hierarchical structure
 Reduces training time and expenses, and increases productivity in multivendor installations

- Management security
 Restricts access to critical configuration commands; offers multiple privilege levels with password protection; ACLs provide Telnet and Simple Network Management Protocol (SNMP) access; local and remote syslog capabilities allow logging of all access

- SNMPv1, v2, and v3
 Provide complete support of SNMP; provide full support of industry-standard Management Information Base (MIB) plus private extensions; SNMPv3 supports increased security using encryption

- Remote monitoring (RMON)
 Uses standard SNMP to monitor essential network functions; supports events, alarm, history, and statistics group plus a private alarm extension group
• FTP, TFTP, and SFTP support
Offers different mechanisms for configuration updates; FTP allows bidirectional transfers over a TCP/IP network; trivial FTP (TFTP) is a simpler method using User Datagram Protocol (UDP); Secure File Transfer Protocol (SFTP) runs over an SSH tunnel to provide additional security

• Debug and sampler utility
Supports ping and traceroute for both IPv4 and IPv6

• Network Time Protocol (NTP)
Synchronizes timekeeping among distributed time servers and clients, keeps timekeeping consistent among all clock-dependent devices within the network so that the devices can provide diverse applications based on the consistent time

• Information center
Provides a central repository for system and network information, aggregates all logs, traps, and debugging information generated by the system and maintains them in order of severity; outputs the network information to multiple channels based on user-defined rules

• Management interface control
Provides management access through modem port and terminal interface, provides access through terminal interface, Telnet, or SSH

• Network Quality Analyzer (NQA)
Analyses network performance and service quality by sending test packets, and provides network performance and service quality parameters such as jitter, TCP, or FTP connection delays; allows network manager to determine overall network performance and diagnose and locate network congestion points or failures

• Role-based security
Delivers role-based access control (RBAC); supports 16 user levels (0~15)

• Standards-based authentication support for LDAP
Integrates seamlessly into existing authentication services

Investment protection
• Re-use of existing SIC and MIM modules
Supports existing SIC and MIM modules, transceivers, and cables for investment protection

Ease of deployment
• Zero-touch deployment
Supports both USB disk auto deployment and 3G SMS auto deployment
Additional information

- **OPEX savings**

 Simplifies and streamlines deployment, management, and training through the use of a common operating system, thereby cutting costs as well as reducing the risk of human errors associated with having to manage multiple operating systems across different platforms and network layers.

- **Faster time to market**

 Allows new and custom features to be brought rapidly to market through engineering efficiencies, delivering better initial and ongoing stability.

- **Green initiative support**

 Provides support for RoHS and WEEE regulations.

Warranty and support

- **1-year warranty**

 See hpe.com/networking/warrantysummary for warranty and support information included with your product purchase.

- **Software releases**

 To find software for your product, refer to hpe.com/networking/support; for details on the software releases available with your product purchase, refer to hpe.com/networking/warrantysummary.
HPE MSR3000 Router Series

<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>HPE MSR3012 AC Router (JG409B)</th>
<th>HPE MSR3012 DC Router (JG410A)</th>
<th>HPE MSR3024 AC Router (JG406A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O ports and slots</td>
<td>1 HMIM slot 2 SIC slots 3 RJ-45 1000BASE-T ports (IEEE 802.3ab Type 1000BASE-T) 1 SFP fixed Gigabit Ethernet SFP port</td>
<td>1 HMIM slot 2 SIC slots 3 RJ-45 1000BASE-T ports (IEEE 802.3ab Type 1000BASE-T) 1 SFP fixed Gigabit Ethernet SFP port</td>
<td>2 HMIM slots 4 SIC slots, or 2 DSIC slots, or a combination 3 RJ-45 1000BASE-T ports (IEEE 802.3ab Type 1000BASE-T) 1 SFP fixed Gigabit Ethernet SFP port</td>
</tr>
<tr>
<td>Additional ports and slots</td>
<td>1 VPM slot</td>
<td>1 VPM slot</td>
<td>1 VPM slot</td>
</tr>
<tr>
<td>Physical characteristics</td>
<td>Dimensions 17.32 (w) x 18.9 (d) x 1.74 (h) in. (44 x 48 x 4.42 cm) (1U height)</td>
<td>17.32 (w) x 18.9 (d) x 1.74 (h) in. (44 x 48 x 4.42 cm) (1U height)</td>
<td>17.32 (w) x 18.9 (d) x 1.74 (h) in. (44 x 48 x 4.42 cm) (1U height)</td>
</tr>
<tr>
<td>Memory and processor</td>
<td>RISC, 4 cores @ 1 GHz, 256 MB flash capacity, 2 GB DDR3 SDRAM</td>
<td>RISC, 4 cores @ 1 GHz, 256 MB flash capacity, 1 GB DDR3 SDRAM</td>
<td>RISC, 4 cores @ 1 GHz, 256 MB flash capacity, 2 GB DDR3 SDRAM</td>
</tr>
<tr>
<td>Mounting and enclosure</td>
<td>Desktop or can be mounted in an EIA standard 19-inch telco rack when used with the rack-mount kit in the package</td>
<td>Desktop or can be mounted in an EIA standard 19-inch telco rack when used with the rack-mount kit in the package</td>
<td>Desktop or can be mounted in an EIA standard 19-inch telco rack when used with the rack-mount kit in the package</td>
</tr>
<tr>
<td>Performance</td>
<td>Throughput Up to 2.6 Mpps (64-byte packets) 200000 entries (IPv4), 200000 entries (IPv6)</td>
<td>Up to 2.6 Mpps (64-byte packets) 200000 entries (IPv4), 200000 entries (IPv6)</td>
<td>Up to 2.6 Mpps (64-byte packets) 500000 entries (IPv4), 500000 entries (IPv6)</td>
</tr>
<tr>
<td>Environment</td>
<td>Operating temperature 32°F to 113°F (0°C to 45°C)</td>
<td>32°F to 113°F (0°C to 45°C)</td>
<td>32°F to 113°F (0°C to 45°C)</td>
</tr>
<tr>
<td>Nonoperating/Storage temperature</td>
<td>-40°F to 158°F (-40°C to 70°C)</td>
<td>-40°F to 158°F (-40°C to 70°C)</td>
<td>-40°F to 158°F (-40°C to 70°C)</td>
</tr>
<tr>
<td>Nonoperating/Storage relative humidity</td>
<td>5% to 90%, noncondensing</td>
<td>5% to 90%, noncondensing</td>
<td>5% to 90%, noncondensing</td>
</tr>
<tr>
<td>Altitude</td>
<td>Up to 16,404 ft (5 km)</td>
<td>Up to 16,404 ft (5 km)</td>
<td>Up to 16,404 ft (5 km)</td>
</tr>
</tbody>
</table>
SPECIFICATIONS

Electrical characteristics

<table>
<thead>
<tr>
<th></th>
<th>HPE MSR3012 AC Router (JG409B)</th>
<th>HPE MSR3012 DC Router (JG401A)</th>
<th>HPE MSR3024 AC Router (JG406A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>50/60 Hz</td>
<td>50/60 Hz</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Maximum heat dissipation</td>
<td>127 BTU/hr (133.98 kJ/hr)</td>
<td>127 BTU/hr (133.98 kJ/hr)</td>
<td>168 BTU/hr (177.24 kJ/hr)</td>
</tr>
<tr>
<td>AC voltage</td>
<td>100–240 VAC</td>
<td>-36 to -75 VDC</td>
<td>100–240 VAC</td>
</tr>
<tr>
<td>DC voltage</td>
<td>100 W</td>
<td>100 W</td>
<td>125 W</td>
</tr>
</tbody>
</table>

Notes

Maximum power rating and maximum heat dissipation are the worst-case theoretical maximum numbers provided for planning the infrastructure with fully loaded PoE (if equipped), 100% traffic, all ports plugged in, and all modules populated.

Reliability

| MTBF (years) | 52.56 | 52.56 | 49.61 |

Safety

- UL 60950-1, EN 60825-1 Safety of Laser Products-Part 1, EN 60825-2 Safety of Laser Products-Part 2; IEC 60950-1, EN 60950-1; CAN/CSA-C22.2 No. 60950-1, FDA 21 CFR Subchapter J, AS/NZS 60950-1; GB 4943.1

Emissions

Telecom

- FCC part 68; CS-03

Notes

Maximum power rating and maximum heat dissipation are the worst-case theoretical maximum numbers provided for planning the infrastructure with fully loaded PoE (if equipped), 100% traffic, all ports plugged in, and all modules populated.
<table>
<thead>
<tr>
<th>SPECIFICATIONS</th>
<th>HPE MSR3012 AC Router (JG409B)</th>
<th>HPE MSR3012 DC Router (JG410A)</th>
<th>HPE MSR3024 AC Router (JG406A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management</td>
<td>IMC—Intelligent Management Center; command-line interface; limited command-line interface; configuration menu; out-of-band management (RJ-45 Ethernet); SNMP Manager; Telnet; RMON1; FTP; in-line and out-of-band; modem interface; out-of-band management (serial RS-232C or Micro USB); IEEE 802.3 Ethernet MIB</td>
<td>IMC—Intelligent Management Center; command-line interface; limited command-line interface; configuration menu; out-of-band management (RJ-45 Ethernet); SNMP Manager; Telnet; RMON1; FTP; in-line and out-of-band; modem interface; out-of-band management (serial RS-232C or Micro USB); IEEE 802.3 Ethernet MIB</td>
<td>IMC—Intelligent Management Center; command-line interface; limited command-line interface; configuration menu; out-of-band management (RJ-45 Ethernet); SNMP Manager; Telnet; RMON1; FTP; in-line and out-of-band; modem interface; out-of-band management (serial RS-232C or Micro USB); IEEE 802.3 Ethernet MIB</td>
</tr>
<tr>
<td>Services</td>
<td>Refer to the Hewlett Packard Enterprise website at hpe.com/networking/services for details on the service-level descriptions and product numbers. For details about services, and response times in your area, please contact your local Hewlett Packard Enterprise sales office.</td>
<td>Refer to the Hewlett Packard Enterprise website at hpe.com/networking/services for details on the service-level descriptions and product numbers. For details about services, and response times in your area, please contact your local Hewlett Packard Enterprise sales office.</td>
<td>Refer to the Hewlett Packard Enterprise website at hpe.com/networking/services for details on the service-level descriptions and product numbers. For details about services, and response times in your area, please contact your local Hewlett Packard Enterprise sales office.</td>
</tr>
</tbody>
</table>
HPE MSR3000 Router Series

SPECIFICATIONS

I/O ports and slots

<table>
<thead>
<tr>
<th>HPE MSR3024 DC Router (JG407A)</th>
<th>HPE MSR3024 PoE Router (JG408A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 HMIM slots</td>
<td>2 HMIM slots</td>
</tr>
<tr>
<td>4 SIC slots, or 2 DSIC slots, or a combination</td>
<td>4 SIC slots, or 2 DSIC slots, or a combination</td>
</tr>
<tr>
<td>3 RJ-45 1000BASE-T ports (IEEE 802.3ab Type 1000BASE-T)</td>
<td>3 RJ-45 1000BASE-T ports (IEEE 802.3ab Type 1000BASE-T)</td>
</tr>
<tr>
<td>1 SFP fixed Gigabit Ethernet SFP port</td>
<td>1 SFP fixed Gigabit Ethernet SFP port</td>
</tr>
</tbody>
</table>

Additional ports and slots

<table>
<thead>
<tr>
<th>HPE MSR3024 DC Router (JG407A)</th>
<th>HPE MSR3024 PoE Router (JG408A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 VPM slot</td>
<td>1 VPM slot</td>
</tr>
</tbody>
</table>

Physical characteristics

<table>
<thead>
<tr>
<th>HPE MSR3024 DC Router (JG407A)</th>
<th>HPE MSR3024 PoE Router (JG408A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>Dimensions</td>
</tr>
<tr>
<td>Weight</td>
<td>Weight</td>
</tr>
<tr>
<td>17.32 (w) x 18.9 (d) x 1.74 (h) in. (44 x 48 x 4.42 cm) (1U height)</td>
<td>17.32 (w) x 18.9 (d) x 1.74 (h) in. (44 x 48 x 4.42 cm) (1U height)</td>
</tr>
<tr>
<td>16.14 lb (7.32 kg)</td>
<td>17.57 lb (7.97 kg)</td>
</tr>
</tbody>
</table>

Memory and processor

<table>
<thead>
<tr>
<th>HPE MSR3024 DC Router (JG407A)</th>
<th>HPE MSR3024 PoE Router (JG408A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RISC, 4 cores @ 1 GHz, 256 MB flash capacity, 2 GB DDR3 SDRAM</td>
<td>RISC, 4 cores @ 1 GHz, 256 MB flash capacity, 2 GB DDR3 SDRAM</td>
</tr>
</tbody>
</table>

Mounting and enclosure

<table>
<thead>
<tr>
<th>HPE MSR3024 DC Router (JG407A)</th>
<th>HPE MSR3024 PoE Router (JG408A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop or can be mounted in an EIA standard 19-inch telco rack when used with the rack-mount kit in the package</td>
<td>Desktop or can be mounted in an EIA standard 19-inch telco rack when used with the rack-mount kit in the package</td>
</tr>
</tbody>
</table>

Performance

<table>
<thead>
<tr>
<th>HPE MSR3024 DC Router (JG407A)</th>
<th>HPE MSR3024 PoE Router (JG408A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput</td>
<td>Throughput</td>
</tr>
<tr>
<td>Up to 2.6 Mpps (64-byte packets)</td>
<td>Up to 2.6 Mpps (64-byte packets)</td>
</tr>
<tr>
<td>Routing table size</td>
<td>Routing table size</td>
</tr>
<tr>
<td>500000 entries (IPv4), 500000 entries (IPv6)</td>
<td>500000 entries (IPv4), 500000 entries (IPv6)</td>
</tr>
<tr>
<td>Forwarding table size</td>
<td>Forwarding table size</td>
</tr>
<tr>
<td>500000 entries (IPv4), 500000 entries (IPv6)</td>
<td>500000 entries (IPv4), 500000 entries (IPv6)</td>
</tr>
</tbody>
</table>

Environment

<table>
<thead>
<tr>
<th>HPE MSR3024 DC Router (JG407A)</th>
<th>HPE MSR3024 PoE Router (JG408A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>Operating temperature</td>
</tr>
<tr>
<td>32°F to 113°F (0°C to 45°C)</td>
<td>32°F to 113°F (0°C to 45°C)</td>
</tr>
<tr>
<td>Operating relative humidity</td>
<td>Operating relative humidity</td>
</tr>
<tr>
<td>5% to 90%, noncondensing</td>
<td>5% to 90%, noncondensing</td>
</tr>
<tr>
<td>Nonoperating/Storage temperature</td>
<td>Nonoperating/Storage temperature</td>
</tr>
<tr>
<td>-40°F to 158°F (-40°C to 70°C)</td>
<td>-40°F to 158°F (-40°C to 70°C)</td>
</tr>
<tr>
<td>Nonoperating/Storage relative humidity</td>
<td>Nonoperating/Storage relative humidity</td>
</tr>
<tr>
<td>5% to 90%, noncondensing</td>
<td>5% to 90%, noncondensing</td>
</tr>
<tr>
<td>Altitude</td>
<td>Altitude</td>
</tr>
<tr>
<td>Up to 16,404 ft (5 km)</td>
<td>Up to 16,404 ft (5 km)</td>
</tr>
</tbody>
</table>
SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>HPE MSR3024 DC Router (JG407A)</th>
<th>HPE MSR3024 PoE Router (JG408A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>50/60 Hz</td>
<td></td>
</tr>
<tr>
<td>Maximum heat dissipation</td>
<td>168 BTU/hr (177.24 kJ/hr)</td>
<td>168 BTU/hr (177.24 kJ/hr)</td>
</tr>
<tr>
<td>AC voltage</td>
<td>100–240 VAC</td>
<td></td>
</tr>
<tr>
<td>DC voltage</td>
<td>-36 to -75 VDC</td>
<td>125 W</td>
</tr>
<tr>
<td>Maximum power rating</td>
<td>125 W</td>
<td>275 W</td>
</tr>
<tr>
<td>PoE power</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

Maximum power rating and maximum heat dissipation are the worst-case theoretical maximum numbers provided for planning the infrastructure with fully loaded PoE (if equipped), 100% traffic, all ports plugged in, and all modules populated.

PoE Power is the power supplied by the internal power supply, it is dependent on the type and quantity of power supplies and may be supplemented with the use of an External Power Supply (EPS).

<table>
<thead>
<tr>
<th>Reliability</th>
<th>49.61</th>
<th>49.61</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTBF (years)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

|---------------------|--------------------------------|---------------------------------|
SPECIFICATIONS

Emissions

<table>
<thead>
<tr>
<th>Specification</th>
<th>HPE MSR3024 DC Router (JG407A)</th>
<th>HPE MSR3024 PoE Router (JG408A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN 61000-4-11:2004</td>
<td>EN 61000-4-11:2004</td>
<td>ANSi C63.4-2009</td>
</tr>
<tr>
<td>EN 55022:2010</td>
<td>EN 55022:2010</td>
<td>GB 9254-2008</td>
</tr>
<tr>
<td>EN 61000-3-2 Ed3.0 (2009-02)</td>
<td>IEC 61000-3-2 Ed3.0 (2009-02)</td>
<td>EN 61000-3-2 Ed2.0 2008-09</td>
</tr>
<tr>
<td>IEC 61000-3-3 Ed2.0 (2008-06)</td>
<td>VCCI V-4/2012.04</td>
<td>EN 55024:2010</td>
</tr>
<tr>
<td>CISPR 24 Ed2.0 2010-08</td>
<td>EN 55024:2010</td>
<td>EN 61000-3-2 2006+A12009+A2:2009</td>
</tr>
<tr>
<td>EN 61000-3-2 2006</td>
<td>EN 61000-3-2 2006</td>
<td>EN 61000-3-2 2006</td>
</tr>
<tr>
<td>En 61000-4-2:2009</td>
<td>En 61000-4-2:2009</td>
<td>En 61000-4-2:2009</td>
</tr>
<tr>
<td>En 61000-4-4:2006</td>
<td>En 61000-4-4:2006</td>
<td>En 61000-4-4:2006</td>
</tr>
<tr>
<td>EN 61000-4-6:2009</td>
<td>EN 61000-4-6:2009</td>
<td>EN 61000-4-6:2009</td>
</tr>
<tr>
<td>EN 61000-4-8:2010</td>
<td>ETSI EN 300 386 V1.6.1 (2012-09)</td>
<td>ETSI EN 300 386 V1.6.1 (2012-09)</td>
</tr>
<tr>
<td>ICES-003 Issue 5</td>
<td>IEC 61000-4-11 Ed2.0 (2004-03)</td>
<td>IEC 61000-4-11 Ed2.0 (2004-03)</td>
</tr>
<tr>
<td>IEC 61000-4-2 Ed2.0 (2008-12)</td>
<td>IEC 61000-4-2 Ed2.0 (2008-12)</td>
<td>IEC 61000-4-2 Ed2.0 (2008-12)</td>
</tr>
<tr>
<td>IEC 61000-4-3 Ed3.2 (2010-04)</td>
<td>IEC 61000-4-3 Ed3.2 (2010-04)</td>
<td>IEC 61000-4-3 Ed3.2 (2010-04)</td>
</tr>
<tr>
<td>IEC 61000-4-4 Ed3.0 (2012-04)</td>
<td>IEC 61000-4-4 Ed3.0 (2012-04)</td>
<td>IEC 61000-4-4 Ed3.0 (2012-04)</td>
</tr>
<tr>
<td>IEC 61000-4-6 Ed3.0 (2008-10)</td>
<td>IEC 61000-4-6 Ed3.0 (2008-10)</td>
<td>IEC 61000-4-6 Ed3.0 (2008-10)</td>
</tr>
<tr>
<td>IEC 61000-4-8 Ed2.0 (2009-09)</td>
<td>VCCI V-3/2013.04</td>
<td>VCCI V-3/2013.04</td>
</tr>
</tbody>
</table>

Telecom

<table>
<thead>
<tr>
<th>Specification</th>
<th>HPE MSR3024 DC Router (JG407A)</th>
<th>HPE MSR3024 PoE Router (JG408A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCC Part 68, CS-03</td>
<td>FCC Part 68, CS-03</td>
<td>FCC Part 68, CS-03</td>
</tr>
</tbody>
</table>

Management

- IMC—Intelligent Management Center; command-line interface; limited command-line interface; configuration menu; out-of-band management (RJ-45 Ethernet); SNMP Manager; Telnet; RMON1; FTP; in-line and out-of-band; modem interface; out-of-band management (serial RS-232C or Micro USB); IEEE 802.3 Ethernet MIB
- IMC—Intelligent Management Center; command-line interface; limited command-line interface; configuration menu; out-of-band management (RJ-45 Ethernet); SNMP Manager; Telnet; RMON1; FTP; in-line and out-of-band; modem interface; out-of-band management (serial RS-232C or Micro USB); IEEE 802.3 Ethernet MIB

Services

Refer to the Hewlett Packard Enterprise website at hpe.com/networking/services for details on the service-level descriptions and product numbers. For details about services, and response times in your area, please contact your local Hewlett Packard Enterprise sales office.

Refer to the Hewlett Packard Enterprise website at hpe.com/networking/services for details on the service-level descriptions and product numbers. For details about services, and response times in your area, please contact your local Hewlett Packard Enterprise sales office.
HPE MSR3000 Router Series

SPECIFICATIONS

HPE MSR3044 Router (JG405A)
- 4 HMIM slots
- 4 SIC slots, or 2 DSIC slots, or a combination
- 3 RJ-45 1000BASE-T ports
 (IEEE 802.3ab Type 1000BASE-T)
- 2 SFP fixed Gigabit Ethernet SFP ports

HPE MSR3064 Router (JG404A)
- 6 HMIM slots
- 4 SIC slots, or 2 DSIC slots, or a combination
- 3 RJ-45 1000BASE-T ports
 (IEEE 802.3ab Type 1000BASE-T)
- 2 SFP fixed Gigabit Ethernet SFP ports

I/O ports and slots
- 3 RJ-45 1000BASE-T ports
 (IEEE 802.3ab Type 1000BASE-T)
- 2 SFP fixed Gigabit Ethernet SFP ports

Additional ports and slots
- 2 VPM slots
- 2 Power Supply slots

Physical characteristics

Dimensions
- 17.32 (w) x 18.9 (d) x 3.47 (h) in.
 (44 x 48 x 8.81 cm) (2U height)
- 17.32 (w) x 18.9 (d) x 5.31 (h) in.
 (44 x 48 x 13.5 cm) (3U height)

Weight
- 27.45 lb (12.45 kg)
- 36.49 lb (16.55 kg)

Memory and processor
- RISC, 4 cores @ 1 GHz, 256 MB flash capacity,
 2 GB DDR3 SDRAM
- RISC, 6 cores @ 1.3 GHz, 256 MB flash capacity,
 2 GB DDR3 SDRAM

Mounting and enclosure
- Desktop or can be mounted in an EIA standard 19-inch
telco rack when used with the rack-mount kit in
 the package

Performance

Throughput
- Up to 3.5 Mpps (64-byte packets)
- 5 Mpps (64-byte packets)

Routing table size
- 500000 entries (IPv4), 500000 entries (IPv6)
- 500000 entries (IPv4), 500000 entries (IPv6)

Forwarding table size
- 500000 entries (IPv4), 500000 entries (IPv6)
- 500000 entries (IPv4), 500000 entries (IPv6)

Environment

Operating temperature
- 32°F to 113°F (0°C to 45°C)
- 32°F to 113°F (0°C to 45°C)

Operating relative humidity
- 5% to 90%, noncondensing
- 5% to 90%, noncondensing

Nonoperating/Storage temperature
- -40°F to 158°F (-40°C to 70°C)
- -40°F to 158°F (-40°C to 70°C)

Nonoperating/Storage relative humidity
- 5% to 90%, noncondensing
- 5% to 90%, noncondensing

Altitude
- Up to 16,404 ft (5 km)
- Up to 16,404 ft (5 km)
SPECIFICATIONS

Electrical characteristics

<table>
<thead>
<tr>
<th>Specification</th>
<th>HPE MSR3044 Router (JG405A)</th>
<th>HPE MSR3064 Router (JG404A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>50/60 Hz</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Maximum heat dissipation</td>
<td>172 BTU/hr (181.46 kJ/hr)</td>
<td>218 BTU/hr (22999 kJ/hr)</td>
</tr>
<tr>
<td>AC voltage</td>
<td>100–240 VAC</td>
<td>100–240 VAC</td>
</tr>
<tr>
<td>DC voltage</td>
<td>-36 to -75 VDC</td>
<td>-36 to -75 VDC</td>
</tr>
<tr>
<td>Maximum power rating</td>
<td>300 W</td>
<td>300 W</td>
</tr>
<tr>
<td>PoE power</td>
<td>450 W PoE+</td>
<td>450 W PoE+</td>
</tr>
</tbody>
</table>

Note

Maximum power rating and maximum heat dissipation are the worst-case theoretical maximum numbers provided for planning the infrastructure with fully loaded PoE (if equipped), 100% traffic, all ports plugged in, and all modules populated.

PoE Power is the power supplied by the internal power supply, it is dependent on the type and quantity of power supplies and may be supplemented with the use of an External Power Supply (EPS).

No default power supply is included in the chassis, a minimum of one/multiple of four power supplies should be ordered.

Reliability

| MTBF (years) | 82.57 | 80.58 |

Safety

UL 60950-1; EN 60825-1 Safety of Laser Products-Part 1; EN 60825-2 Safety of Laser Products-Part 2; IEC 60950-1; EN 60950-1; IEC 60950-1; FDA 21 CFR Subchapter J; AS/NZS 60950-1; GB 4943.1

Emissions

UL 60950-1; EN 60825-1 Safety of Laser Products-Part 1; EN 60825-2 Safety of Laser Products-Part 2; IEC 60950-1; EN 60950-1; IEC 60950-1; FDA 21 CFR Subchapter J; AS/NZS 60950-1; GB 4943.1

UL 60950-1; EN 60825-1 Safety of Laser Products-Part 1; EN 60825-2 Safety of Laser Products-Part 2; IEC 60950-1; EN 60950-1; IEC 60950-1; FDA 21 CFR Subchapter J; AS/NZS 60950-1; GB 4943.1

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Feature</th>
<th>HPE MSR3044 Router (JG405A)</th>
<th>HPE MSR3064 Router (JG404A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telecom</td>
<td>FCC part 68; CS-03</td>
<td>FCC part 68; CS-03</td>
</tr>
<tr>
<td>Management</td>
<td>IMC—Intelligent Management Center; command-line interface; limited command-line interface; configuration menu; out-of-band management (RJ-45 Ethernet); SNMP Manager; Telnet; RMON1; FTP, in-line and out-of-band; modem interface; out-of-band management (serial RS-232C or Micro USB); IEEE 802.3 Ethernet MIB</td>
<td>IMC—Intelligent Management Center; command-line interface; limited command-line interface; configuration menu; out-of-band management (RJ-45 Ethernet); SNMP Manager; Telnet; RMON1; FTP, in-line and out-of-band; modem interface; out-of-band management (serial RS-232C or Micro USB); IEEE 802.3 Ethernet MIB</td>
</tr>
<tr>
<td>Services</td>
<td>Refer to the Hewlett Packard Enterprise website at hpe.com/networking/services for details on the service-level descriptions and product numbers. For details about services, and response times in your area, please contact your local Hewlett Packard Enterprise sales office.</td>
<td>Refer to the Hewlett Packard Enterprise website at hpe.com/networking/services for details on the service-level descriptions and product numbers. For details about services, and response times in your area, please contact your local Hewlett Packard Enterprise sales office.</td>
</tr>
</tbody>
</table>

STANDARDS AND PROTOCOLS

(applies to all products in series)

BGP

- RFC 1163 Border Gateway Protocol (BGP)
- RFC 1267 Border Gateway Protocol 3 (BGP-3)
- RFC 1657 Definitions of Managed Objects for BGPv4
- RFC 1771 BGPv4
- RFC 1772 Application of the BGP Protocol
- RFC 1773 Experience with the BGP-4 Protocol
- RFC 1774 BGP-4 Protocol Analysis
- RFC 1965 BGP-4 Confederations
- RFC 1997 BGP Communities Attribute
- RFC 2439 BGP Route Flap Damping
- RFC 2547 BGP/MPLS VPNs
- RFC 2796 BGP Route Reflection
- RFC 2842 Capability Advertisement with BGP-4
- RFC 2858 BGP-4 Multi-Protocol Extensions
- RFC 2918 Route Refresh Capability
- RFC 3065 Autonomous System Confederations for BGP
- RFC 3107 Support BGP carry Label for MPLS
- RFC 3392 Capabilities Advertisement with BGP-4
- RFC 4271 A Border Gateway Protocol 4 (BGP-4)
- RFC 4273 Definitions of Managed Objects for BGP-4
- RFC 4274 BGP-4 Protocol Analysis
- RFC 4275 BGP-4 MIB Implementation Survey
- RFC 4276 BGP-4 Implementation Report
- RFC 4277 Experience with the BGP-4 Protocol
- RFC 4360 BGP Extended Communities Attribute
- RFC 4456 BGP Route Reflection: An alternative to full mesh internal BGP (IBGP)
- RFC 4724 Graceful Restart Mechanism for BGP
- RFC 4760 Multi-protocol Extensions for BGP-4
- RFC 1998 An Application of the BGP Community Attribute in Multi-Home Routing

Denial of service protection

- CPU DoS Protection
- Rate Limiting by ACLs

Device management

- RFC 1155 Structure and Mgmt Information (SMIV1)
- RFC 1157 SMIV1/v2c
- RFC 1305 NTPv3
- RFC 1997 DNS (client)
- RFC 1902 (SMIV2)
- RFC 1908 (SMIV1/v2 Coexistence)
- RFC 1945 Hypertext Transfer Protocol—HTTP/1.0
- RFC 2271 Framework
- RFC 2573 (SMIV3 Applications)
- RFC 2576 (Coexistence between (SMIV1, v2, and v3))
- RFC 2578-2580 SMIV2
- RFC 2579 (SMIV2 Text Conventions)
- RFC 2580 (SMIV2 Conformance)
- RFC 3416 SNMP Protocol Operations v2
- RFC 3417 (SNMP Transport Mappings)
General protocols

RFC 768 UDP
RFC 760 DoD Standard Internet Protocol
RFC 764 Telnet Protocol Specification
RFC 777 Internet Control Message Protocol
RFC 785 TFTP Protocol (revision 2)
RFC 791 IP
RFC 792 ICMP
RFC 793 TCP
RFC 815 Window and Acknowledgement Strategy in TCP
RFC 815 IP datagram reassembly algorithms
RFC 826 ARP
RFC 854 Telnet Protocol Specification
RFC 855 Telnet Option Specifications
RFC 856 Telnet Binary Transmission
RFC 857 Telnet Echo Option
RFC 858 Telnet Suppress Go Ahead Option
RFC 862 Echo Service (TCP Echo)
RFC 879 TCP maximum segment size and related topics
RFC 882 Domain names: Concepts and facilities
RFC 883 Domain names: Implementation specification
RFC 894 A Standard for the Transmission of IP Datagrams over Ethernet Networks
RFC 896 Congestion Control in IP/TCP Internetworks
RFC 906 Bootstrap loading using TFTP (Trivial File Transfer Protocol)
RFC 917 Internet Subnets
RFC 919 Broadcasting Internet Datagrams
RFC 922 Broadcasting Internet Datagrams in the Presence of Subnets (IP_BROAD)
RFC 925 Multi-LAN Address Resolution
RFC 926 Protocol for providing the connectionless mode network services
RFC 950 Internet Standard Subnetting Procedure
RFC 951 BOOTP
RFC 958 Network Time Protocol (NTP)
RFC 959 File Transfer Protocol (FTP)
RFC 973 Domain system changes and observations
RFC 988 Host extensions for IP multicasting
RFC 1027 Proxy ARP
RFC 1034 Domain names—concepts and facilities
RFC 1035 Domain names—implementation and specification
RFC 1048 BOOTP (Bootstrap Protocol) vendor information extensions
RFC 1054 Host extensions for IP multicasting
RFC 1058 IPv6
RFC 1059 Network Time Protocol (version 1) specification and implementation
RFC 1060 Assigned Numbers
RFC 1063 IP MTU (Maximum Transmission Unit) discovery options
RFC 1071 Computing the Internet checksum
RFC 1072 TCP extensions for long-delay paths
RFC 1079 Telnet terminal speed option
RFC 1084 BOOTP (Bootstrap Protocol) vendor information extensions
RFC 1091 Telnet Terminal-Type Option
RFC 1093 NSFNET routing architecture
RFC 1101 DNS encoding of network names and other types
RFC 1119 Network Time Protocol (version 2) specification and implementation
RFC 1122 Requirements for Internet Hosts—Communication Layers
RFC 1141 Incremental updating of the Internet checksum
RFC 1142 OSI IS-IS Intra-domain Routing Protocol
RFC 1164 Application of the Border Gateway Protocol in the Internet
RFC 1166 Internet address used by Internet Protocol (IP)
RFC 1171 Point-to-Point Protocol for the transmission of multi-protocol datagrams over Point-to-Point links
RFC 1172 Point-to-Point Protocol (PPP) initial configuration options
RFC 1175 TCP Extension for High-Speed Paths
RFC 1191 Path MTU discovery
RFC 1195 OSI IS-IS for IP and Dual Environments
RFC 1213 Management Information Base for Network Management of TCP/IP-based internets
RFC 1253 (OSPFv2)
RFC 1265 BGP Protocol Analysis
RFC 1266 Experience with the BGP Protocol
RFC 1268 Application of the Border Gateway Protocol in the Internet
RFC 1271 Remote Network Monitoring Management Information Base
RFC 1284 Definitions of Managed Objects for the Ethernet-Like Interface Types
RFC 1286 Definitions of Managed Objects for Bridges
RFC 1294 Multi-protocol Interconnect over Frame Relay
RFC 1305 IPv6 (IPv4 only)
RFC 1321 The MDS Message-Digest Algorithm
RFC 1322 TCP Extensions for High Performance
RFC 1331 The Point-to-Point Protocol (PPP) for the Transmission of Multi-protocol Datagrams over Point-to-Point Links
RFC 1332 The PPP Internet Protocol Control Protocol (IPCP)
RFC 1333 PPP Link Quality Monitoring
RFC 1334 PPP Encryption Protocols
RFC 1349 Type of Service
RFC 1350 TFTP Protocol (revision 2)
RFC 1364 BGP OSPF Interaction
RFC 1370 Applicability Statement for OSPF
RFC 1377 The PPP OSI Network Layer Control Protocol (OSINLCPP)
RFC 1393 Traceroute Using an IP Option
RFC 1395 BOOTP (Bootstrap Protocol) Vendor Information Extensions
RFC 1398 Definitions of Managed Objects for the Ethernet-Like Interface Type
RFC 1403 BGP OSPF Interaction
RFC 1444 Conformance Statements for version 2 of the Simple Network Management Protocol (SNMPv2)
RFC 1449 Transport Mappings for version 2 of the Simple Network Management Protocol (SNMPv2)
RFC 1471 The Definitions of Managed Objects for the Link Control Protocol of the Point-to-Point Protocol
RFC 1473 The Definitions of Managed Objects for the IP Network Control Protocol of the Point-to-Point Protocol
RFC 1483 Multi-protocol Encapsulation over ATM Adaptation Layer 5
RFC 1490 Multi-protocol Interconnect over Frame Relay
RFC 1497 BOOTP (Bootstrap Protocol) Vendor Information Extensions
RFC 1519 CIDR
RFC 1531 Dynamic Host Configuration Protocol
RFC 1532 Clarifications and Extensions for the Bootstrap Protocol
RFC 1533 DHCP Options and BOOTP Vendor Extensions
RFC 1534 Interoperation Between DHCP and BOOTP
RFC 1541 Dynamic Host Configuration Protocol
RFC 1542 BOOTP Extensions
RFC 1543 Clarifications and Extensions for the Bootstrap Protocol
RFC 1548 The Point-to-Point Protocol (PPP)
RFC 1549 PPP in HDLC Framing
RFC 1570 PPP LCP (Point-to-Point Protocol Link Control Protocol) Extensions
RFC 1577 Classical IP and ARP over ATM
RFC 1597 Address Allocation for Private Internets
RFC 1618 PPP over ISDN
STANDARDS AND PROTOCOLS

(Applies to all products in series)

RFC 1679 PPP over SONET/SDH (Synchronous Optical Network/Synchronous Digital Hierarchy)
RFC 1624 Incremental Internet Checksum
RFC 1631 NAT
RFC 1650 Definitions of Managed Objects for the Ethernet-Like Interface Types using SMiv2
RFC 1663 The Point-to-Point Protocol (PPP)
RFC 1662 PPP in HDLC-Like Framing
RFC 1700 Assigned Numbers
RFC 1701 Generic Routing Encapsulation
RFC 1702 Generic Routing Encapsulation over IPv4 networks
RFC 1717 The PPP Multilink Protocol (MP)
RFC 1721 RIP-2 Analysis
RFC 1722 RIP-2 Applicability
RFC 1723 RIP-2
RFC 1724 RIP version 2 MB Extension
RFC 1757 Remote Network Monitoring Management Information Base
RFC 1777 Lightweight Directory Access Protocol
RFC 1812 IPv4 Routing
RFC 1825 Security Architecture for the Internet Protocol
RFC 1826 IP Authentication Header
RFC 1827 IP Encapsulating Security Payload (ESP)
RFC 1829 The ESP DES-CBC Transform
RFC 1877 PPP Internet Protocol Control Protocol Extensions for Name Server Addresses
RFC 1884 IP version 6 Addressing Architecture
RFC 1885 Internet Control Message Protocol (ICMPv6) for the Internet Protocol version 6 (IPv6) Specification
RFC 1886 DNS Extensions to support IPv6 version 6
RFC 1933 Transition Mechanisms for IPv6 Hosts and Routers
RFC 1945 Hypertext Transfer Protocol—HTTP/1.0
RFC 1962 The PPP Compression Control Protocol (CCP)
RFC 1966 BGP Route Reflection An alternative to full mesh IBGP
RFC 1970 Neighbor Discovery for IP version 6 (IPv6)
RFC 1971 IPv6 Stateless Address Autoconfiguration
RFC 1972 A Method for the Transmission of IPv6 Packets over Ethernet Networks
RFC 1981 Path MTU Discovery for IPv4 version 6
RFC 1982 Serial Number Arithmetic
RFC 1989 PPP Link Quality Monitoring
RFC 1990 The PPP Multilink Protocol (MP)
RFC 1994 PPP Challenge Handshake Authentication Protocol (CHAP)
RFC 2002 IP Mobility Support
RFC 2003 IP Encapsulation within IP
RFC 2011 SNMPv2 Management Information Base for the Internet Protocol using SMiv2
RFC 2012 SNMPv2 Management Information Base for the Transmission Control Protocol using SMiv2
RFC 2013 SNMPv2 Management Information Base for the User Datagram Protocol using SMiv2
RFC 2018 TCP Selective Acknowledgement Options
RFC 2021 Remote Network Monitoring Management Information Base version 2 using SMiv2
RFC 2073 An IPv6 Provider-Based Unicast Address Format
RFC 2082 RIP-2 MDS Authentication
RFC 2091 Triggered Extensions to RIP to Support Demand Circuits
RFC 2104 HMAC: Keyed-Hashing for Message Authentication
RFC 2131 DHCP
RFC 2132 DHCP Options and BOOTP Vendor Extensions
RFC 2136 Dynamic Updates in the Domain Name System (DNS UPDATE)
RFC 2138 Remote Authentication Dial In User Service (RADIUS)
RFC 2205 Resource Reservation Protocol (RSVP)—version 1 Functional Specification
RFC 2209 Resource Reservation Protocol (RSVP)—version 1 Message Processing Rules
RFC 2210 Use of RSVP (Resource Reservations Protocol) in Integrated Services
RFC 2225 Classical IP and ARP over ATM
RFC 2236 IGMP Snooping
RFC 2244 The TLS Protocol version 1.0
RFC 2251 Lightweight Directory Access Protocol (v3)
RFC 2283 MBGP
RFC 2292 Advanced Sockets API for IPv6
RFC 2309 Recommendations on queue management and congestion avoidance in the Internet
RFC 2327 SDP: Session Description Protocol
RFC 2338 VRRP
RFC 2344 Reverse Tunneling for Mobile IP
RFC 2358 Definitions of Managed Objects for the Ethernet-like Interface Types
RFC 2364 PPP Over AAL5
RFC 2365 Administratively Scoped IP Multicast
RFC 2373 IP version 6 Addressing Architecture
RFC 2374 An IPv6 Aggregatable Global Unicast Address Format
RFC 2375 IPv6 Multicast Address Assignments
RFC 2385 Protection of BGP Sessions via the TCP MDS Signature Option
RFC 2427 Multi-protocol interconnect over Frame Relay
RFC 2428 FTP Extensions for IPv6 and NATs
RFC 2433 Microsoft® PPP CHAP (Challenge Handshake Authentication Protocol) Extensions
RFC 2451 The ESP CBC-Modes Cipher Algorithms
RFC 2452 IP version 6 Management Information Base for the Transmission Control Protocol
RFC 2453 RIP-2
RFC 2454 IPv6 version 6 Management Information Base for the User Datagram Protocol
RFC 2461 Neighbor Discovery for IPv6 version 6 (IPv6)
RFC 2462 IPv6 Stateless Address Autoconfiguration
RFC 2463 Internet Control Message Protocol (ICMPv6) for the Internet Protocol version 6 (IPv6) Specification
RFC 2464 Transmission of IPv6 Packets over Ethernet Networks
RFC 2465 Management Information Base for IPv6 version 6: Textual Conventions and General Group
RFC 2466 Management Information Base for IPv6 version 6: ICMPv6 Group
RFC 2472 IP version 6 over PPP
RFC 2474 Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers
RFC 2507 IP Header Compression
RFC 2508 Compressing IP/UDP/RTP Headers for Low-Speed Serial Links
RFC 2509 IP Header Compression over PPP
RFC 2510 Internet X.509 Public Key Infrastructure Certificate Management Protocols
RFC 2516 A Method for Transmitting PPP Over Ethernet (PPPoE)
RFC 2519 A Framework for Inter-Domain Route Aggregation
STANDARDS AND PROTOCOLS
(applies to all products in series)

RFC 2529 Transmission of IPv6 over IPv6 Domains without Explicit Tunnels
RFC 2543 SIP: Session Initiation Protocol
RFC 2548 (MS-RAS-Vendor only)
RFC 2553 Basic Socket Interface Extensions for IPv6
RFC 2570 Introduction to version 3 of the Internet-standard Network Management Framework
RFC 2581 TCP Congestion Control
RFC 2597 Assured Forwarding PHB Group
RFC 2598 An Expedited Forwarding PHB
RFC 2615 PPP over SONET/SDH (Synchronous Optical Network/Synchronous Digital Hierarchy)
RFC 2616 HTTP Compatibility v1.1
RFC 2617 HTTP Authentication: Basic and Digest Access Authentication
RFC 2618 RADIUS Authentication Client MIB
RFC 2620 RADIUS Accounting Client MIB
RFC 2644 Changing the Default for Directed Broadcasts in Routers
RFC 2661 L2TP
RFC 2663 NAT Terminology and Considerations
RFC 2665 Definitions of Managed Objects for the Ethernet-Like Interface Types
RFC 2668 Definitions of Managed Objects for IPv6 802.3 Medium Attachment Units (MAUs)
RFC 2675 IPv6 Jumbograms
RFC 2684 Multi-protocol Encapsulation over ATM Adaptation Layer 5
RFC 2685 Virtual Private Networks Identifier
RFC 2686 The Multi-Class Extension to Multi-Link PPP
RFC 2694 DNS extensions to Network Address Translators (DNS_ALG)
RFC 2698 A Two Rate Three Color Marker
RFC 2702 Requirements for Traffic Engineering Over MPLS
RFC 2711 IPv6 Router Alert Option
RFC 2716 PPP EAP TLS Authentication Protocol
RFC 2767 RSVP Cryptographic Authentication
RFC 2763 Dynamic Name-to-System ID mapping
RFC 2784 Generic Routing Encapsulation (GRE)
RFC 2787 Definitions of Managed Objects for the Virtual Router Redundancy Protocol
RFC 2827 Network Ingress Filtering: Defeating Denial of Service Attacks Which Employ IP Source Address Spoofing
RFC 2833 RTP Payload for DTMF Digits, Teledphony Tones and Telephony Signals
RFC 2865 Remote Authentication Dial In User Service (RADIUS)
RFC 2866 RADIUS Accounting
RFC 2868 RADIUS Attributes for Tunnel Protocol Support
RFC 2896 RADIUS Extensions
RFC 2884 Performance Evaluation of Explicit Congestion Notification (ECN) in IP Networks
RFC 2894 Router Renumbering for IPv6
RFC 2917 A Core MPLS IP VPN Architecture
RFC 2925 Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations
RFC 2961 RSVP Refresh Overhead Reduction Extensions
RFC 2963 A Rate Adaptive Shaper for Differentiated Services
RFC 2965 HTTP State Management Mechanism
RFC 2966 Domain-wide Prefix Distribution with Two-Level IS-IS
RFC 2973 IS-IS Mesh Groups
RFC 2976 The SIPv INFO Method
RFC 2993 Architectural Implications of NAT
RFC 3011 The IPv4 Subnet Selection Option for DHCP
RFC 3022 Traditional IP Network Address Translator (Traditional NAT)
RFC 3024 Reverse Tunneling for Mobile IP, revised
RFC 3025 Mobile IP Vendor/Organization-Specific Extensions
RFC 3031 Multi-protocol Label Switching Architecture
RFC 3032 MPLS Label Stack Encoding
RFC 3036 LDP Specification
RFC 3037 LDP (Label Distribution Protocol) Applicability
RFC 3041 Privacy Extensions for Stateless Address Autoconfiguration in IPv6
RFC 3046 DHCP Relay Agent Information Option
RFC 3063 MPLS Loop Prevention Mechanism
RFC 3097 RSVP (Resource Reservation Protocol) Cryptographic Authentication—Updated Message Type Value
RFC 3115 Mobile IP Vendor/Organization-Specific Extensions
RFC 3137 OSPF Stub Router Advertisement
RFC 3168 The Addition of Explicit Congestion Notification (ECN) to IP
RFC 3176 InMon Corporation’s sFlow: A Method for Monitoring Traffic in Switched and Routed Networks
RFC 3209 RSVP-TE: Extensions to RSVP for LSP Tunnels
RFC 3210 Applicability Statement for Extensions to RSVP for LSP-Tunnels
RFC 3215 LDP State Machine
RFC 3220 IP Mobility Support for IPv4
RFC 3246 Expedited Forwarding PHB
RFC 3261 SIP: Session Initiation Protocol
RFC 3262 Reliability of Provisional Responses in Session Initiation Protocol (SIP)
RFC 3263 Session Initiation Protocol (SIP): Locating SIP Servers
RFC 3265 Session Initiation Protocol (SIP)—Specific Event Notification
RFC 3268 Advanced Encryption Standard (AES) Ciphersuites for Transport Layer Security (TLS)
RFC 3270 Multi-Protocol Label Switching (MPLS) Support of Differentiated Services
RFC 3273 Remote Network Monitoring Management Information Base for High Capacity Networks
RFC 3277 IS-IS Transient Blackhole Avoidance
RFC 3279 Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile
RFC 3280 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile
RFC 3306 Unicast-Prefix-Based IPv6 Multicast Addresses
RFC 3307 Allocation Guidelines for IPv6 Multicast Addresses
RFC 3311 The Session Initiation Protocol (SIP) UPDATE Method
RFC 3319 Dynamic Host Configuration Protocol (DHCPv6) Options for Session Initiation Protocol (SIP) Servers
RFC 3323 A Privacy Mechanism for the Session Initiation Protocol (SIP)
RFC 3325 Private Extensions to the Session Initiation Protocol (SIP) for Asserted Identity within Trusted Networks
RFC 3326 The Reason Header Field for the Session Initiation Protocol (SIP)
RFC 3344 IP Mobility Support for IPv4
RFC 3345 Border Gateway Protocol (BGP) Persistent Route Oscillation Condition
RFC 3359 Reserved Type, Length, and Value (TLV) Codepoints in Intermediate System to Intermediate System (IS-IS) Point-to-Point Adjacencies
RFC 3392 Support BGP capabilities advertisement
RFC 3410 Introduction to version 3 of the Internet-standard Network Management Framework
STANDARDS AND PROTOCOLS
(applies to all products in series)

RFC 3442 The Classless Static Route Option for Dynamic Host Configuration Protocol (DHCP) version 4
RFC 3443 Time To Live (TTL) Processing in Multi-protocol Label Switching (MPLS) Networks
RFC 3446 Anycast Rendezvous Point (RP) mechanism using Protocol Independent Multicast (PIM) and Multicast Source Discovery Protocol (MSDP)
RFC 3478 Graceful Restart Mechanism for Label Distribution Protocol
RFC 3479 Fault Tolerance for the Label Distribution Protocol (LDPP)
RFC 3484 Default Address Selection for Internet Protocol version 6 (IPv6)
RFC 3493 Basic Socket Interface Extensions for IPv6
RFC 3495 Dynamic Host Configuration Protocol (DHCP) Option for CableLabs Client Configuration
RFC 3509 OSPF ABR Behavior
RFC 3513 Internet Protocol version 6 (IPv6) Addressing Architecture
RFC 3515 The Session Initiation Protocol (SIP) Refer Method
RFC 3526 More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE) Peers
RFC 3527 Link Selection sub-option for the Relay Agent Information Option for DHCPv4
RFC 3542 Advanced Sockets Application Program Interface (API) for IPv6
RFC 3547 The Group Domain of Interpretation
RFC 3564 Requirements for Support of Differentiated Services-aware MPLS Traffic Engineering
RFC 3567 Intermediate System to Intermediate System (IS-IS) Cryptographic Authentication
RFC 3569 An Overview of Source-Specific Multicast (SSM)
RFC 3584 Coexistence between version 1 and version 2 of the Internet-standard Network Management Framework
RFC 3587 IPv6 Global Unicast Address Format
RFC 3590 Source Address Selection for the Multicast Listener Discovery (MLD) Protocol
RFC 3596 DNS Extensions to Support IP version 6
RFC 3602 The AES-CBC Cipher Algorithm and Its Use with IPSec
RFC 3612 Applicability Statement for Restart Mechanisms for the Label Distribution Protocol (LDP)
RFC 3618 Multicast Source Discovery Protocol (MSDP)
RFC 3621 Power Ethernet MIB
RFC 3623 Graceful OSPF Restart
RFC 3628 The Advanced Encryption Standard (AES) Cipher Algorithm in the SNMP User-based Security Model
RFC 3647 Restart signaling for IS-IS
RFC 3679 Deprecating Site Local Addresses
RFC 3680 Traffic Engineering (TE) Extensions to OSPF version 2
RFC 3686 Definitions of Managed Objects for IEEE 802.15 Medium Attachment Units (MAUs)
RFC 3646 DNS Configuration options for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)
RFC 3662 A Lower Effort Per-Domain Behavior (PDB) for Differentiated Services
RFC 3704 Unicast Reverse Path Forwarding (URPF)
RFC 3706 A Traffic-Based Method of Detecting Dead Internet Key Exchange (IKE) Peers
RFC 3711 The Secure Real-time Transport Protocol (SRTP)
RFC 3784 Intermediate System to Intermediate System (IS-IS) For MPLS Traffic Engineering
RFC 3786 Extending the Number of IS-IS LSP Fragments Beyond the 256 Limit
RFC 3787 Recommendations for Interoperable IP Networks using Intermediate System to Intermediate System (IS-IS)
RFC 3809 Generic Requirements for Provider Provisioned Virtual Private Networks (VPNs)
RFC 3810 Multicast Listener Discovery version 2 (MLDv2) for IPv6
RFC 3811 Definitions of Textual Conventions (TCs) for Multi-protocol Label Switching (MPLS) Management
RFC 3812 Multi-protocol Label Switching (MPLS) Traffic Engineering (TE) Management Information Base (MIB)
RFC 3814 Multi-protocol Label Switching (MPLS) Forwarding Equivalence Class To Next Hop Label Forwarding Entry (FEC-To-NHLFE) Management Information Base (MIB)
RFC 3815 Definitions of Managed Objects for the Multi-protocol Label Switching (MPLS) Label Distribution Protocol (LDP)
RFC 3826 The Advanced Encryption Standard (AES) Cipher Algorithm in the DiffServ-aware MPLS Traffic Engineering (TE) Management Information Base (MIB)
RFC 3828 The Advanced Encryption Standard (AES) Cipher Algorithm in the DiffServ-aware MPLS Traffic Engineering (TE) Management Information Base (MIB)
RFC 3833 Entity MIB (version 3)
RFC 3842 Removing a Restriction on the use of MPLS Explicit NULL
RFC 3843 Basic Transition Mechanisms for IPv6 Hosts and Routers
Standards and Protocols

(Applies to all products in series)

<table>
<thead>
<tr>
<th>RFC No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4214</td>
<td>Intra-Site Automatic Tunnel Addressing Protocol (SATAP)</td>
</tr>
<tr>
<td>4221</td>
<td>Multi-protocol Label Switching (MPLS) Management Overview</td>
</tr>
<tr>
<td>4222</td>
<td>Prioritized Treatment of Specific OSPF version 2 Packets and Congestion Avoidance</td>
</tr>
<tr>
<td>4242</td>
<td>Information Refresh Time Option for Dynamic Host Configuration Protocol for IPv6 (DHCPv6)</td>
</tr>
<tr>
<td>4244</td>
<td>An Extension to the Session Initiation Protocol (SIP) for Request History Information</td>
</tr>
<tr>
<td>4250</td>
<td>The Secure Shell (SSH) Protocol Assigned Numbers</td>
</tr>
<tr>
<td>4251</td>
<td>The Secure Shell (SSH) Protocol Architecture</td>
</tr>
<tr>
<td>4252</td>
<td>The Secure Shell (SSH) Authentication Protocol</td>
</tr>
<tr>
<td>4253</td>
<td>The Secure Shell (SSH) Transport Layer Protocol</td>
</tr>
<tr>
<td>4254</td>
<td>The Secure Shell (SSH) Connection Protocol</td>
</tr>
<tr>
<td>4272</td>
<td>BGP Security Vulnerabilities Analysis</td>
</tr>
<tr>
<td>4291</td>
<td>IPv6 version 6 Addressing Architecture</td>
</tr>
<tr>
<td>4292</td>
<td>IP Forwarding Table MIB</td>
</tr>
<tr>
<td>4293</td>
<td>Management Information Base for the Internet Protocol (IP)</td>
</tr>
<tr>
<td>4294</td>
<td>IPv6 Node Requirements</td>
</tr>
<tr>
<td>4305</td>
<td>Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)</td>
</tr>
<tr>
<td>4306n</td>
<td>Internet Key Exchange (IKEv2) Protocol</td>
</tr>
<tr>
<td>4308</td>
<td>Cryptographic Suites for IPSec</td>
</tr>
<tr>
<td>4361</td>
<td>Node-specific Client Identifiers for Dynamic Host Configuration Protocol version 4 (DHCPv4)</td>
</tr>
<tr>
<td>4365</td>
<td>Applicability Statement for BGP/MPLS IP Virtual Private Networks (VPN) Services</td>
</tr>
<tr>
<td>4377</td>
<td>Operations and Management (OAM) Requirements for Multi-Protocol Label Switched (MPLS) Networks</td>
</tr>
<tr>
<td>4381</td>
<td>Analyses of the Security of BGP/MPLS IP VPNs</td>
</tr>
<tr>
<td>4382</td>
<td>MPLS/BGP Layer 3 Virtual Private Network (VPN) Management Information Base</td>
</tr>
<tr>
<td>4384</td>
<td>BGP Communities for Data Collection</td>
</tr>
<tr>
<td>4385</td>
<td>Pseudowire Emulation Edge to Edge (PWE3) Control Word for Use over an MPLS PSN</td>
</tr>
<tr>
<td>4419</td>
<td>Diffie-Hellman Group Exchange for the Secure Shell (SSH) Transport Layer Protocol</td>
</tr>
<tr>
<td>4443</td>
<td>Internet Control Message Protocol (ICMPv6) for the Internet Protocol version 6 (IPv6) Specification</td>
</tr>
<tr>
<td>4444</td>
<td>Management Information Base for Intermediate System to Intermediate System (IS-IS)</td>
</tr>
<tr>
<td>4446</td>
<td>IANA Allocations for Pseudowire Edge to Edge Emulation (PWE3)</td>
</tr>
<tr>
<td>4447</td>
<td>Pseudowire Setup and Maintenance Using the Label Distribution Protocol (LDP)</td>
</tr>
<tr>
<td>4448</td>
<td>Encapsulation Methods for Transport of Ethernet over MPLS Networks</td>
</tr>
<tr>
<td>4451</td>
<td>BGP MULTI_EXIT_DISC (MED) Considerations</td>
</tr>
<tr>
<td>4468</td>
<td>Subcodes for BGP Cease Notification Message</td>
</tr>
<tr>
<td>4502</td>
<td>Remote Network Monitoring Management Information Base version 2</td>
</tr>
<tr>
<td>4541</td>
<td>Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches</td>
</tr>
<tr>
<td>4552</td>
<td>Authentication/Confidentiality for OSPFv3</td>
</tr>
<tr>
<td>4553</td>
<td>Structure-Agnostic Time Division Multiplexing (TDM) over Packet (SAToP)</td>
</tr>
<tr>
<td>4561</td>
<td>Definition of a Record Route Object (RRO) Node-ID-Sub-Objects</td>
</tr>
<tr>
<td>4562</td>
<td>MAC-Forced Forwarding: A Method for Subscriber Separation on an Ethernet Access Network</td>
</tr>
<tr>
<td>4566</td>
<td>Session Description Protocol (SDP) Security Descriptions for Media Streams</td>
</tr>
<tr>
<td>4576</td>
<td>Using a Link State Advertisement (LSA) Options Bit to Prevent Looping in BGP/MPLS IP Virtual Private Networks (VPNs)</td>
</tr>
<tr>
<td>4554</td>
<td>OSPFv3 Protocol Specification (Revised)</td>
</tr>
<tr>
<td>4577</td>
<td>OSPF as the Provider/Customer Edge Protocol for BGP/MPLS IP Virtual Private Networks (VPNs)</td>
</tr>
<tr>
<td>4594</td>
<td>Configuration Guidelines for DiffServ Service Classes</td>
</tr>
<tr>
<td>4570</td>
<td>Protocol Independent Multicast—Sparse Mode (PIM-SM) Protocol Specification (Revised)</td>
</tr>
<tr>
<td>4604</td>
<td>Using Internet Group Management Protocol version 2 (IGMPv2) and Multicast Listener Discovery Protocol version 2 (MLDv2) for Source-Specific Multicast</td>
</tr>
<tr>
<td>4605</td>
<td>Internet Group Management Protocol (IGMP) Multicast Listener Discovery (MLD)–Based Multicast Forwarding (IGMP/MLD Proxying)</td>
</tr>
<tr>
<td>4606</td>
<td>Source-Specific Multicast for IP</td>
</tr>
<tr>
<td>4608</td>
<td>Source-Specific Protocol Independent Multicast in 232/8</td>
</tr>
<tr>
<td>4610</td>
<td>Anycast-RP Using Protocol Independent Multicast (PIM)</td>
</tr>
<tr>
<td>4618</td>
<td>Encapsulation Methods for Transport of PPP/High-Level Data Link Control (HIDLC) over MPLS Networks</td>
</tr>
<tr>
<td>4419</td>
<td>Encapsulation Methods for Transport of Frame Relay over Multi-protocol Label Switching (MPLS) Networks</td>
</tr>
<tr>
<td>4632</td>
<td>Classless Inter-Domain Routing (CIDR) the Internet Address Assignment and Aggregation Plan</td>
</tr>
<tr>
<td>4449</td>
<td>Dynamic Host Configuration Protocol for IPv6 (DHCPv6) Relay Agent Remote-ID Option</td>
</tr>
<tr>
<td>4659</td>
<td>BGP/MPLS IP Virtual Private Network (VPN) Extension for IPv6 VPNs</td>
</tr>
<tr>
<td>4464</td>
<td>Framework for Layer 2 Virtual Private Networks (L2VPLS)</td>
</tr>
<tr>
<td>4465</td>
<td>Service Requirements for Layer 2 Provider-Provisioned Virtual Private Networks</td>
</tr>
<tr>
<td>4717</td>
<td>Encapsulation Methods for Transport of Asynchronous Transfer Mode (ATM) over MPLS Networks</td>
</tr>
<tr>
<td>4741</td>
<td>NETCONF Configuration Protocol</td>
</tr>
<tr>
<td>4742</td>
<td>Using the NETCONF Configuration Protocol over Secure shell (SSH)</td>
</tr>
<tr>
<td>4763</td>
<td>Using NETCONF over the Simple Object Access Protocol (SOAP)</td>
</tr>
<tr>
<td>4750</td>
<td>OSPF version 2 Management Information Base</td>
</tr>
<tr>
<td>4761</td>
<td>Virtual Private LAN Service (VPLS) Using BGP for Auto-Discovery and Signaling</td>
</tr>
<tr>
<td>4765</td>
<td>Service Requirements for Layer 2 Provider Provisioned Virtual Private Networks</td>
</tr>
<tr>
<td>4781</td>
<td>Graceful Restart Mechanism for BGP with MPLS</td>
</tr>
<tr>
<td>4787</td>
<td>Network Address Translation (NAT) Behavioral Requirements for Unicast UDP</td>
</tr>
<tr>
<td>4797</td>
<td>Use of Provider Edge to Provider Edge (PE-PE) Generic Routing Encapsulation (GRE) or IP in BGP/MPLS IP Virtual Private Networks</td>
</tr>
<tr>
<td>4798</td>
<td>Connecting IPv6 Islands over IPv4, MPLS Using IPv4 Provider Edge Routers (6PE)</td>
</tr>
<tr>
<td>4811</td>
<td>OSPF Out-of-Band Link State Database (LSDB) Resynchronization</td>
</tr>
<tr>
<td>4812</td>
<td>OSPF Restart Signaling</td>
</tr>
<tr>
<td>4813</td>
<td>OSPF Link-Local Signaling</td>
</tr>
<tr>
<td>4816</td>
<td>Pseudowire Emulation Edge to Edge (PWE3) Asynchronous Transfer Mode (ATM) Transparent Cell Transport Service</td>
</tr>
<tr>
<td>4818</td>
<td>RADIUS Delegated-Ipv6-Prefix Attribute</td>
</tr>
<tr>
<td>4835</td>
<td>Cryptographic Algorithm Implementation Requirements for Encapsulating Security Payload (ESP) and Authentication Header (AH)</td>
</tr>
</tbody>
</table>
STANDARDS AND PROTOCOLS
(applies to all products in series)

RFC 4861 Neighbor Discovery for IP version 6 (IPv6)
RFC 4862 IPv6 Stateless Address Autoconfiguration
RFC 4878 Definitions and Managed Objects for Operations, Administration, and Maintenance (OAM) Functions on RFC 4893 BGP Support for Four-octet AS Number Space
RFC 4940 IANA Considerations for OSPF
RFC 4941 Privacy Extensions for Stateless Address Autoconfiguration in IPv6
RFC 5004 Avoid BGP Best Path Transitions from One External to Another
RFC 5007 DHCPv6 Leasequery
RFC 5015 Bidirectional Protocol Independent Multicast (BIDIR-PIM)
RFC 5036 LDP Specification
RFC 5060 Protocol Independent Multicast MIB
RFC 5065 Autonomous System Confederations for BGP
RFC 5066 IPv6 version 6 over PPP
RFC 5082 The Generalized TTL Security Mechanism (GTSM)
RFC 5085 Pseudowire Virtual Circuit Connectivity Verification (VCCV): A Control Channel for Pseudowires
RFC 5086 Structure-Aware Time Division Multiplexed (TDM) Circuit Emulation Service over Packet Switched Network (CESoPSN)
RFC 5095 Deprecation of Type 0 Routing Headers in IPv6
RFC 5130 A Policy Control Mechanism in IS-IS Using Administrative Tags
RFC 5132 IP Multicast MIB
RFC 5187 OSPFv3 Graceful Restart
RFC 5214 Intra-Site Automatic Tunnel Addressing Protocol (ISATAP)
RFC 5260 Protocol Independent Multicast (PIM) Bootstrap Router MIB
RFC 5277 NETCONF Event Notifications
RFC 5280 Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile
RFC 5281 Extensible Authentication Protocol Tunnelled Transport Layer Security Authenticated Protocol version 0 (EAP-TTLSv0)
RFC 5286 Basic Specification for IP Fast Reroute: Loop-Free Alternates
RFC 5287 Control Protocol Extensions for the Setup of Time-Division Multiplexing (TDM) Pseudowires in MPLS Networks
RFC 5301 Dynamic Hostname Exchange Mechanism for IS-IS
RFC 5302 Domain-Wide Prefix Distribution with Two-Level IS-IS
RFC 5303 Three-Way Handshake for IS-IS Point-to-Point Adjacencies
RFC 5304 Intermediate System to Intermediate System (IS-IS) Cryptographic Authentication
RFC 5305 IS-IS Extensions for Traffic Engineering
RFC 5306 Restart Signaling for IS-IS
RFC 5308 Routing IPv6 with IS-IS
RFC 5309 Point-to-Point Operation over LAN in Link State Routing Protocols
RFC 5310 IS-IS Generic Cryptographic Authentication
RFC 5359 Session Initiation Protocol Service Examples
RFC 5381 Experience of Implementing NETCONF over SOAP
RFC 5382 The IP Network Address Translator (NAT)
RFC 5398 Autonomous System (AS) Number Reservation for Documentation Use
RFC 5416 Control and Provisioning of Wireless Access Points (CAPWAP) Protocol Binding for IEEE 802.11
RFC 5443 LDP IGP Synchronization
RFC 5492 Capabilities Advertisement with BGP-4
RFC 5496 The Reverse Path Forwarding (RPF) Vector TLV
RFC 5508 NAT Behavioral Requirements for ICMP
RFC 5539 NETCONF over Transport Layer Security (TLS)
RFC 5601 Pseudowire (PW) Management Information Base (MIB)
RFC 5602 Pseudowire (PW) over MPLS PSN Management Information Base (MIB)
RFC 5613 OSPF Link-Local Signaling
RFC 5659 An Architecture for Multi-Segment Pseudowire Emulation Edge to Edge
RFC 5681 TCP Congestion Control
RFC 5798 Virtual Router Redundancy Protocol (VRRP) version 3 for IPv4 and IPv6
RFC 5833 Control and Provisioning of Wireless Access Points (CAPWAP) Protocol Base MIB
RFC 5834 Control and Provisioning of Wireless Access Points (CAPWAP) Protocol Binding MIB for IEEE 802.11
RFC 5880 Bidirectional Forwarding Detection
RFC 5881 BFD for IPv4 and IPv6 (Single Hop)
RFC 5881 Bidirectional Forwarding Detection (BFD) for IPv4 and IPv6 (Single Hop)
RFC 5882 Generic Application of BFD
RFC 5883 BFD for Multihop Paths
RFC 6037 Cisco Systems’ Solution for Multicast in MPLS/BGP IP VPNs
RFC 6085 Address Mapping of IPv6 Multicast Packets on Ethernet
STANDARDS AND PROTOCOLS
(appplies to all products in series)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RFC 2362 PIM Sparse Mode</td>
<td>RFC 3376 IGMPv3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFC 2710 Multicast Listener Discovery (MLD) for IPv6</td>
<td>RFC 3376 IGMPv3 (host joins only)</td>
<td></td>
</tr>
<tr>
<td>IPv6</td>
<td>RFC 2080 RIPng for IPv6</td>
<td>RFC 2545 Use of MP-BGP-4 for IPv6</td>
<td>RFC 3056 Connection of IPv6 Domains via IPv4 Clouds</td>
</tr>
<tr>
<td></td>
<td>RFC 2460 IPv6 Specification</td>
<td>RFC 2553 Basic Socket Interface Extensions for IPv6</td>
<td>RFC 3162 RADIUS and IPv6</td>
</tr>
<tr>
<td></td>
<td>RFC 2473 Generic Packet Tunneling in IPv6</td>
<td>RFC 2740 OSPFv3 for IPv6</td>
<td>RFC 3315 DHCPv6 (client and relay)</td>
</tr>
<tr>
<td></td>
<td>RFC 2475 IPv6 DiffServ Architecture</td>
<td>RFC 2893 Transition Mechanisms for IPv6 Hosts and Routers</td>
<td>RFC 5340 OSPF for IPv6</td>
</tr>
<tr>
<td></td>
<td>RFC 2529 Transmission of IPv6 Packets over IPv4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIBs</td>
<td>RFC 1213 MIB II</td>
<td>RFC 2013 SNMPv2 MIB for UDP</td>
<td>RFC 2574 SNMP USM MIB</td>
</tr>
<tr>
<td></td>
<td>RFC 1493 Bridge MIB</td>
<td>RFC 2096 IP Forwarding Table MIB</td>
<td>RFC 2674 802.1p and IEEE 802.1Q Bridge MIB</td>
</tr>
<tr>
<td></td>
<td>RFC 1724 RIPv2 MIB</td>
<td>RFC 2233 Interfaces MIB</td>
<td>RFC 2737 Entity MIB (version 2)</td>
</tr>
<tr>
<td></td>
<td>RFC 1850 OSPFv2 MIB</td>
<td>RFC2273 SNMPv3 Applications</td>
<td>RFC 2863 The Interfaces Group MIB</td>
</tr>
<tr>
<td></td>
<td>RFC 1907 SNMPv2 MIB</td>
<td>RFC 2571 SNMP Framework MIB</td>
<td>RFC 3813 MPLS LSR MIB</td>
</tr>
<tr>
<td></td>
<td>RFC 2011 SNMPv2 MIB for IP</td>
<td>RFC 2572 SNMP-MPD MIB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFC 2012 SNMPv2 MIB for TCP</td>
<td>RFC 2573 SNMP-Notification MIB</td>
<td></td>
</tr>
<tr>
<td>Network management</td>
<td>IEEE 802.1D (STP)</td>
<td>RFC 1905 SNMPv2 Protocol Operations</td>
<td>RFC 2274 USM for SNMPv3</td>
</tr>
<tr>
<td></td>
<td>RFC 1098 Simple Network Management Protocol (SNMP)</td>
<td>RFC 1906 SNMPv2 Transport Mappings</td>
<td>RFC 2275 VACM for SNMPv3</td>
</tr>
<tr>
<td></td>
<td>RFC 1158 Management Information Base for network management of TCP/IP-based Internets: MIB-II</td>
<td>RFC 1908 Coexistence between version 1 and version 2 of the Internet-Standard Network Management Framework</td>
<td>RFC 2575 SNMPv3 View-Based Access Control Model (VACM)</td>
</tr>
<tr>
<td></td>
<td>RFC 1212 Concise MIB definitions</td>
<td>RFC 1918 Private Internet Address Allocation RFC 2037 Entity MIB using SMIv2</td>
<td>RFC 3164 BSD syslog Protocol</td>
</tr>
<tr>
<td></td>
<td>RFC 1904 SNMPv2 Conformance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STANDARDS AND PROTOCOLS

(applies to all products in series)

<table>
<thead>
<tr>
<th>OSPF</th>
<th>RFC 1245 OSPF protocol analysis</th>
<th>RFC 1587 OSPF NSSA</th>
<th>RFC 2328 OSPFv2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RFC 1246 Experience with OSPF</td>
<td>RFC 1765 OSPF Database Overflow</td>
<td>RFC 2370 OSPF Opaque LSA Option</td>
</tr>
<tr>
<td></td>
<td>RFC 1583 OSPFv2</td>
<td>RFC 1850 OSPFv2 Management Information Base (MIB), traps</td>
<td>RFC 3101 OSPF NSSA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>QoS/CoS</th>
<th>IEEE 802.1p (CoS)</th>
<th>RFC 2598 DiffServ Expedited Forwarding (EF)</th>
<th>RFC 3247 Supplemental Information for the New Definition of the EF PHB (Expedited Forwarding Per-Hop Behavior)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RFC 2474 DS Field in the IPv4 and IPv6 Headers</td>
<td>RFC 2697 A Single Rate Three Color Marker RFC 3168 The Addition of Explicit Congestion Notification (ECN) to IP</td>
<td>RFC 3260 New Terminology and Clarifications for DiffServ</td>
</tr>
<tr>
<td></td>
<td>RFC 2475 DiffServ Architecture</td>
<td>RFC 2597 DiffServ Assured Forwarding (AF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RFC 2598 DiffServ Assured Forwarding (AF)</td>
<td>RFC 2597 DiffServ Assured Forwarding (AF)</td>
<td></td>
</tr>
</tbody>
</table>

Security	IEEE 802.1X Port Based Network Access Control	RFC 2408 Internet Security Association and Key Management Protocol (ISAKMP)	RFC 2818 HTTP Over TLS
	RFC 2082 RIPv-2 MD5 Authentication	RFC 2409 The Internet Key Exchange (IKE)	RFC 2865 RADIUS Authentication
	RFC 2104 Keyed-Hashing for Message Authentication	RFC 2412 The OAKLEY Key Determination Protocol	RFC 2866 RADIUS Accounting
	RFC 2138 RADIUS Authentication	RFC 2459 Internet X.509 Public Key Infrastructure Certificate and CRL Profile	RFC 3579 RADIUS Support For Extensible Authentication Protocol (EAP)
	RFC 1828 IP Authentication using Keyed MD5	RFC 2409 The Internet Key Exchange (IKE)	
	RFC 1853 IP in IP Tunneling	RFC 2407 The Internet IP Security Domain of Interpretation for ISAKMP	
	RFC 2401 Security Architecture for the Internet Protocol	RFC 2410 The NULL Encryption Algorithm and its use with IPSec	RFC 3948—UDP Encapsulation of IPsec ESP Packets
	RFC 2402 IP Authentication Header	RFC 2405 The ESP DES-CBC Cipher Algorithm With Explicit IV	RFC 4301—Security Architecture for the Internet Protocol
	RFC 2403 The Use of HMAC-MD5-96 within ESP and AH	RFC 2406 IP Encapsulating Security Payload (ESP)	RFC 4302—IP Authentication Header (AH)
	RFC 2404 The Use of HMAC-SHA-1-96 within ESP and AH	RFC 2407 The Internet IP Security Domain of Interpretation for ISAKMP	RFC 4303—IP Encapsulating Security Payload (ESP)
	RFC 2405 The ESP DES-CBC Cipher Algorithm With Explicit IV	RFC 2410 The NULL Encryption Algorithm and its use with IPSec	RFC 4305—Cryptographic Algorithm Implementation Requirements for ESP and AH

<table>
<thead>
<tr>
<th>VPN</th>
<th>RFC 1853 IP in IP Tunneling</th>
<th>RFC 2406 IP Encapsulating Security Payload (ESP)</th>
<th>RFC 3948—UDP Encapsulation of IPsec ESP Packets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RFC 2402 IP Authentication Header</td>
<td>RFC 2410 The NULL Encryption Algorithm and its use with IPSec</td>
<td>RFC 4302—IP Authentication Header (AH)</td>
</tr>
<tr>
<td></td>
<td>RFC 2403 The Use of HMAC-MD5-96 within ESP and AH</td>
<td>RFC 2405 The ESP DES-CBC Cipher Algorithm With Explicit IV</td>
<td>RFC 4303—IP Encapsulating Security Payload (ESP)</td>
</tr>
<tr>
<td></td>
<td>RFC 2404 The Use of HMAC-SHA-1-96 within ESP and AH</td>
<td>RFC 2407 The Internet IP Security Domain of Interpretation for ISAKMP</td>
<td>RFC 4305—Cryptographic Algorithm Implementation Requirements for ESP and AH</td>
</tr>
</tbody>
</table>
HPE MSR3000 Router Series accessories

Transceivers

- HPE X110 100M SFP LC FX Transceiver (JD102B)
- HPE X110 100M SFP LC LX Transceiver (JD120B)
- HPE X110 100M SFP LC LH40 Transceiver (JD090A)
- HPE X110 100M SFP LC LH80 Transceiver (JD091A)
- HPE X120 1G SFP LC SX Transceiver (JD118B)
- HPE X120 1G SFP LC LX Transceiver (JD119B)
- HPE X125 1G SFP LC LH40 1310nm Transceiver (JD061A)
- HPE X120 1G SFP LC LH40 1550nm Transceiver (JD062A)
- HPE X125 1G SFP LC LH70 Transceiver (JD063B)
- HPE X120 1G SFP LC LH100 Transceiver (JD103A)
- HPE X120 1G SFP LC BX 10-U Transceiver (JD098B)
- HPE X120 1G SFP LC BX 10-D Transceiver (JD099B)

Cables

- HPE X200 V.24 DCE 3m Serial Port Cable (JD519A)
- HPE X200 V.24 DCE 3m Serial Port Cable (JD51A)
- HPE X200 V.35 DTE 3m Serial Port Cable (JD523A)
- HPE X200 V.35 DCE 3m Serial Port Cable (JD525A)
- HPE X260 RS449 3m DTE Serial Port Cable (JF825A)
- HPE X260 RS449 3m DCE Serial Port Cable (JF826A)
- HPE X260 RS530 3m DTE Serial Port Cable (JF827A)
- HPE X260 RS530 3m DCE Serial Port Cable (JF828A)
- HPE X260 Auxiliary Router Cable (JD508A)
- HPE X260 E1 RJ45 3m Router Cable (JD509A)
- HPE X260 E1 RJ45 20m Router Cable (JD517A)
- HPE X260 E1 (2) BNC 75 ohm 3m Router Cable (JD175A)
- HPE X260 E1 BNC 20m Router Cable (JD514A)
- HPE X260 E1 RJ45 BNC 75-120 ohm Conversion Router Cable (JD511A)
- HPE X260 E1 BNC 3m Router Cable (JD663A)
- HPE X260 E1 BNC 75 ohm 3m Router Cable (JD512A)
- HPE X260 T1 Router Cable (JD518A)
- HPE X260 SIC-8AS RJ45 0.28m Router Cable (JD642A)
- HPE X260 mini D-28 to 4-RJ45 0.3m Router Cable (JG263A)
- HPE X260 T3/E3 Router Cable (JD531A)
- HPE X260 E1 RJ45 to 2x BNC 75 ohm 3m Router Cable (JH294A)
- HPE X260 E1 RJ45 120 ohm 2m Router Cable (JC156A)
- HPE X260 E1 RJ45 120 ohm 15m Router Cable (JC151A)
- HPE X260 E1 RJ45 120 ohm 30m Router Cable (JC152A)
- HPE X260 T1 Router Cable (JD518A)

Power supply

- HPE X351 300W 100-240VAC to 12VDC Power Supply (JG527A)
- HPE X351 300W -48/-60VDC to 12VDC Power Supply (JG528A)
- HPE 5800 750W AC Power Supply (JC089A)
- HPE RPS 800 Redundant Power Supply (JD183A)
HPE MSR3000 Router Series accessories (continued)

Router Modules

- HPE MSR 1-port E1(CE1)/PRI SIC Module (JG604A)
- HPE MSR 9-port 10/100Base-T Switch DSIC Module (JD574B)
- HPE MSR 9-port 10/100Base-T PoE Switch DSIC Module (JD621A)
- HPE MSR 4-port 10/100Base-T Switch SIC Module (JD572A)
- HPE MSR 4-port Gig-T Switch SIC Module (JD739A)
- HPE MSR 4-port Gig-T PoE Switch SIC Module (JD740A)
- HPE MSR 1-port 10/100Base-T SIC Module (JD545B)
- HPE MSR 1-port 100Base-X SIC Module (JF280A)
- HPE MSR 1-port GbE Combo SIC Module (JG738A)
- HPE MSR 2-port FXO SIC Module (JD558A)
- HPE MSR 2-port FXS SIC Module (JD560A)
- HPE MSR 1-port E1 Voice SIC Module (JD575A)
- HPE MSR 1-port T1 Voice SIC Module (JD576A)
- HPE MSR 2-port FXS/1-port FXO SIC Module (JD632A)
- HPE MSR 4-port FXS/4-port FXD DSIC Module (JG189A)
- HPE MSR 1-port E1/Fractional E1 (75 ohm) SIC Module (JD634B)
- HPE MSR 2-port E1/Fractional E1 (75 ohm) SIC Module (JF842A)
- HPE MSR 1-port T1/Fractional T1 SIC Module (JD538A)
- HPE MSR 1-port Enhanced Serial SIC Module (JD557A)
- HPE MSR 2-port Enhanced Sync/Async Serial SIC Module (JG736A)
- HPE MSR 4-port Enhanced Sync/Async Serial SIC Module (JG737A)
- HPE MSR 1-port ISDN-S/T SIC Module (JD571A)
- HPE MSR 8-port Async Serial SIC Module (JF281A)
- HPE MSR 16-port Async Serial SIC Module (JG186A)
- HPE MSR 1-port 8-wire G.SHDSL (RJ45) DSIC Module (JG91A)
- HPE MSR 4G LTE SIC Module for Verizon/LTE 700 MHz/CDMA Rev A (JG742A)
- HPE MSR 4G LTE SIC Module for ATT/LTE 700/700/2100 MHz and UMTS/HSPA+/HSPA/EDGE/GRPS/HSUPA/UMTS/HSPA/EDGE/GRPS/HSUPA/UMTS/GSM (JG743A)
- HPE MSR 4G LTE SIC Module for Global/LTE 800/900/1800/2100MHz UMTS/HSPA+/HSPA/EDGE/GRPS/HSUPA/UMTS/GSM (JG744B)
- HPE MSR 1-port E1/T1 Voice SIC Module (JH240A)
- HPE MSR HSPA+/WCDMA SIC Module (JG929A)
- HPE MSR 1U HMIM Adapter Module (JG46A)
- HPE MSR 0.5U HMIM Adapter Module (JG415A)
- HPE MSR 1-port E1 Voice HMIM Module (JG429A)
- HPE MSR 1-port T1 Voice HMIM Module (JG430A)
- HPE MSR 2-port E1 Voice HMIM Module (JG431A)
- HPE MSR 2-port T1 Voice HMIM Module (JG432A)
- HPE MSR 4-port FXS HMIM Module (JG446A)
- HPE MSR 4-port FXD HMIM Module (JG447A)
- HPE MSR 4-port E and M HMIM Module (JG448A)
- HPE MSR 16-port FXS HMIM Module (JG434A)
- HPE MSR 4-port Enhanced Sync/Async Serial HMIM Module (JG442A)
- HPE MSR 8-port Enhanced Sync/Async Serial HMIM Module (JG443A)
HPE MSR3000 Router Series accessories (continued)

<table>
<thead>
<tr>
<th>Accessory Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPE MSR 1-port E3/CE3/FE3 HMIM Module</td>
<td>JG436A</td>
</tr>
<tr>
<td>HPE MSR 1-port T3/CT3/FT3 HMIM Module</td>
<td>JG435A</td>
</tr>
<tr>
<td>HPE MSR 1-port OC-3c/STM-1c POS HMIM Module</td>
<td>JG438A</td>
</tr>
<tr>
<td>HPE MSR 2-port Gig-T HMIM Module</td>
<td>JG420A</td>
</tr>
<tr>
<td>HPE MSR 4-port Gig-T HMIM Module</td>
<td>JG421A</td>
</tr>
<tr>
<td>HPE MSR 8-port Gig-T HMIM Module</td>
<td>JG422A</td>
</tr>
<tr>
<td>HPE MSR 2-port 1000BASE-X HMIM Module</td>
<td>JG423A</td>
</tr>
<tr>
<td>HPE MSR 4-port 1000BASE-X HMIM Module</td>
<td>JG424A</td>
</tr>
<tr>
<td>HPE MSR 8-port 1000BASE-X HMIM Module</td>
<td>JG425A</td>
</tr>
<tr>
<td>HPE MSR 24-port Gig-T Switch HMIM Module</td>
<td>JG426A</td>
</tr>
<tr>
<td>HPE MSR 24-port Gig-T PoE Switch HMIM Module</td>
<td>JG427A</td>
</tr>
<tr>
<td>HPE MSR 8-port 10/100/1000BASE-T/2-port 1000BASE-X (Combo) Switch HMIM Module</td>
<td>JG741A</td>
</tr>
<tr>
<td>HPE MSR 1-port OC-3/STM-1 CPOS HMIM Module</td>
<td>JG428A</td>
</tr>
<tr>
<td>HPE MSR 8-port 1000BASE-FX/1000BASE-X</td>
<td>4-port 1000BASE-T (Combo) L2/L3 HMIM Module</td>
</tr>
<tr>
<td>HPE MSR 16-port Enhanced Async Serial HMIM Module</td>
<td>JG445A</td>
</tr>
<tr>
<td>HPE MSR 8-port E1/CE1/T1/CT1/PRI HMIM Module</td>
<td>JH169A</td>
</tr>
<tr>
<td>HPE MSR 8-port E1/Fractional E1/T1/Fractional T1 HMIM Module</td>
<td>JH172A</td>
</tr>
<tr>
<td>HPE MSR Open Application Platform (OAP) with VMware® vSphere MIM Module</td>
<td>JG532A</td>
</tr>
<tr>
<td>HPE MSR Medium Survivable Branch Communication MIM Module powered by Microsoft Lync®</td>
<td>JG588A</td>
</tr>
<tr>
<td>HPE MSR G2 128-channel Voice Processing Module</td>
<td>JG417A</td>
</tr>
</tbody>
</table>

License
- HPE IPS Activation for MSR3000 E-LTU (JH224AAE)
- HPE DV Essential IPS Filter Service for MSR3000 1yr E-LTU (JH228AAE)

Power cords
- HPE X290 MSR30 1m RPS Cable (JD637A)

Memory
- HPE X600 1G Compact Flash Card (JC686A)
- HPE X600 512M Compact Flash Card (JC685A)
- HPE X600 256M Compact Flash Card (JC684A)
- HPE X610 4GB DDR3 SDRAM UDIMM Memory (JG530A)

Learn more at hpe.com/networking