HPE FlexFabric 7900 Switch Series

Key features

• Nonblocking and lossless Clos architecture
• Large Layer 2 scaling with TRILL and IRF
• VXLAN support for virtualized and cloud deployments
• SDN-enabled with OpenFlow 1.3 support
• High 10GbE, 40GbE, and 100GbE density across 9.6 Tbps switch fabric

Product overview

The HPE FlexFabric 7900 Switch Series is the next generation compact modular data center core switch designed to support virtualized data centers and evolutionary needs of private and public clouds deployments.

The 7900 delivers unprecedented levels of performance, buffering, scale, and availability with high-density 10GbE, 40GbE, and 100GbE interfaces using only a fraction of the footprint used by traditional chassis. The switch supports full Layer 2 and 3 features along with advanced data center features including TRILL, IRF, VXLAN, and open standards-based programmability with OpenFlow support.

Features and benefits

Product architecture

• Modern scalable system architecture
 Provides nonblocking, lossless Clos architecture with VOQs and large buffers with the flexibility and scalability for future growth
• Distributed architecture with separation of data and control planes
 Delivers enhanced fault tolerance and facilitates continuous operation and zero service disruption during planned or unplanned control-plane events
• Advanced Comware modular operating system
 Brings native high stability, independent process monitoring, and restart through the modular
design and multiple processes of Hewlett Packard Enterprise Comware v7 software; supports
enhanced serviceability functions
• In-Service Software Upgrade (ISSU)
 Provides IRF based upgrade of the entire fabric for seamless and non-disruptive maintenance

Performance
• High-performance fully distributed architecture
 Delivers up to 9.6 Tbps switching capacity and 5.94 Bpps throughput with nonblocking
wirespeed performance
• High-density 1/10GbE, 40GbE, and 100GbE interface connectivity
 Offers up to 10 interface module slots to scale up to 120 40GbE or 20 100GbE or 480 10GbE
or 240 1/10GbE interface or a combination
• Low latency and consistent performance
 Under 5 microsecond latency (64-byte packets) and consistent performance for broad range
of applications typical of a data center including mixed traffic loads of real-time, multicast, and
storage traffic
• Distributed scalable fabric architecture
 Integrated fabric and management modules to deliver more than 1 Tb per slot bandwidth

Data center optimized
• Virtual Extensible LAN (VXLAN)
 VXLAN Routing/Bridging to provide wire-rate support to build overlay networks enabling
virtual machine mobility and cloud deployments
• Scalable Layer 2 fabric functionality
 Builds flexible, resilient, and scalable Layer 2 fabrics with TRILL and IRF
• Ethernet Virtual Interconnect (EVI)
 Is an Hewlett Packard Enterprise Virtual Application Network innovation that provides a Layer 2
extension across the data center to simplify the interconnectivity of geographically disperse data
centers
• Front-to-back airflow design
 Accommodates deployment in data centers utilizing hot-cold aisles

Resiliency and high availability
• Intelligent Resilient Fabric (IRF)
 Creates virtual resilient switching fabrics, where two switches perform as a single L2 switch
and L3 router; servers or switches can be attached using standard LACP for automatic load
balancing and high availability there by eliminating the need for complex protocols and
simplifying network operations
• Redundant/load-sharing fabrics, management, fan assemblies, and power supplies increase
total performance and power availability while providing hitless, stateful failover
• Hot-swappable modules
 Allows replacement of modules without any impact on other modules
• Graceful restart
 Allows routers to indicate to others their capability to maintain a routing table during a temporary
shutdown, which significantly reduces convergence times upon recovery; supports OSPF, BGP,
and IS-IS
• Virtual Router Redundancy Protocol (VRRP)
 Allows groups of two routers to dynamically back each other up to create highly available routed environments

• Device Link Detection Protocol (DLDP)
 Monitors link connectivity and shuts down ports at both ends if unidirectional traffic is detected, preventing loops in STP-based networks

• IEEE 802.3ad Link Aggregation Control Protocol (LACP)
 Supports up to 1024 trunk groups and up to 16 members per trunk; supports static or dynamic groups and a user-selectable hashing algorithm

• Mid-plane free chassis design
 Delivers increased system reliability and optimal airflow as the chassis has no mid-plane and line cards connect directly to the onboard fabric card

• Bidirectional Forwarding Detection (BFD)
 Ultrafast sub second protocol convergence with standards based failure detection which enables link connectivity monitoring and reduces network convergence time for RIP, OSPF, BGP, IS-IS, and VRRP

Layer 2 switching

• VLAN
 Supports up to 4,094 port-based or IEEE 802.1Q-based VLANs

• Port mirroring
 Duplicates port traffic (ingress and egress) to a local or remote monitoring port; supports four mirroring groups, with an unlimited number of ports per group

• Port isolation
 Increases security by isolating ports within a VLAN while still allowing them to communicate with other VLANs

• Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) protocol snooping
 Controls and manages the flooding of multicast packets in a Layer 2 network

• Spanning Tree Protocol (STP)
 Supports standard IEEE 802.1D STP; IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) for faster convergence; and IEEE 802.1s Multiple Spanning Tree Protocol (MSTP)

Layer 3 routing

• Open shortest path first (OSPF)
 Delivers faster convergence; uses this link-state routing Interior Gateway Protocol (IGP), which supports ECMP, NSSA, and MD5 authentication for increased security and graceful restart for faster failure recovery

• Intermediate system to intermediate system (IS-IS)
 Uses a path vector IGP, which is defined by the ISO organization for IS-IS routing and extended by IETF RFC 1195 to operate in both TCP/IP and the OSI reference model (Integrated IS-IS)

• Border Gateway Protocol 4 (BGP-4)
 Delivers an implementation of the Exterior Gateway Protocol (EGP) utilizing path vectors; uses TCP for enhanced reliability for the route discovery process; reduces bandwidth consumption by advertising only incremental updates; supports extensive policies for increased flexibility; scales to very large networks
• Dual IP stack
 Maintains separate stacks for IPv4 and IPv6 to ease the transition from an IPv4-only network to an IPv6-only network design

• Multiprotocol Label Switching (MPLS) Layer 3 VPN
 Allows Layer 3 VPNs across a provider network; uses MP-BGP to establish private routes for increased security; supports RFC 2547bis multiple autonomous system VPNs for added flexibility

• Equal-Cost Multipath (ECMP)
 Enables multiple equal-cost links in a routing environment to increase link redundancy and scale bandwidth

• IP performance optimization
 Provides a set of tools to improve the performance of IPv4 networks; includes directed broadcasts, customization of TCP parameters, support of ICNP error packets, and extensive display capabilities

• Unicast Reverse Path Forwarding (uRPF)
 Limits erroneous or malicious traffic in accordance with RFC 3074

• BGP+
 Extends BGP-4 to support Multiprotocol BGP (MBGP), including support for IPv6 addressing

• IPv6 tunneling
 Allows a smooth transition from IPv4 to IPv6 by encapsulating IPv6 traffic over an existing IPv4 infrastructure

• IS-IS for IPv6
 Extends IS-IS to support IPv6 addressing

• OSPFv3
 Provides OSPF support for IPv6

• Static IPv4 routing
 Provides simple manually configured IPv4 routing

• Routing Information Protocol (RIP)
 Uses a distance vector algorithm with UDP packets for route determination; supports RIPv1 and RIPv2 routing; includes loop protection

• RIPng
 Extends RIPv2 to support IPv6 addressing

• Static IPv6 routing
 Provides simple manually configured IPv6 routing

Quality of Service (QoS)

• IEEE 802.1p prioritization
 Delivers data to devices based on the priority and type of traffic

• Flexible classification
 Creates traffic classes based on access control lists (ACLs), IEEE 802.1p precedence, IP, and DSCP or Type of Service (ToS) precedence; supports filter, redirect, mirror, remark, and logging
• Bandwidth shaping
 – Port-based rate limiting
 Provides per-port ingress-/egress-enforced increased bandwidth
 – Classifier-based rate limiting
 Uses an access control list (ACL) to enforce increased bandwidth for ingress traffic on each port
 – Reduced bandwidth
 Provides per-port, per-queue egress-based reduced bandwidth
• Broad QoS feature set
 Provides support for Strict Priority Queuing (SP), Weighted Fair Queuing (WFQ), Weighted Deficit Round Robin (WDRR), SP+WDRR together, configurable buffers, Explicit Congestion Notification (ECN), and Weighted Random Early Detection (WRED)
• Traffic policing
 Supports Committed Access Rate (CAR) and line rate

Layer 3 services
• Address Resolution Protocol (ARP)
 Determines the MAC address of another IP host in the same subnet; supports static ARPs; gratuitous ARP allows detection of duplicate IP addresses; proxy ARP allows normal ARP operation between subnets or when subnets are separated by a Layer 2 network
• User Datagram Protocol (UDP) helper
 Redirects UDP broadcasts to specific IP subnets to prevent server spoofing
• Dynamic Host Configuration Protocol (DHCP)
 Simplifies the management of large IP networks and supports client and server; DHCP Relay enables DHCP operation across subnets

Management
• Management interface control
 Enables or disables each of the following interfaces depending on security preferences: console port, telnet port, or reset button
• Industry-standard CLI with a hierarchical structure
 Reduces training time and expenses, and increases productivity in multivendor installations
• SNMPv1, v2, and v3
 Provide complete support of SNMP; provide full support of industry-standard Management Information Base (MIB) plus private extensions; SNMPv3 supports increased security using encryption
• sFlow® (RFC 3176)
 Provides scalable ASIC-based wirespeed network monitoring and accounting with no impact on network performance; this allows network operators to gather a variety of sophisticated network statistics and information for capacity planning and real-time network monitoring purposes
• Remote monitoring (RMON)
 Uses standard SNMP to monitor essential network functions; supports events, alarm, history, and statistics group plus a private alarm extension group
• Debug and sampler utility
 Supports ping and traceroute for both IPv4 and IPv6
• Network Time Protocol (NTP)
Synchronizes timekeeping among distributed time servers and clients, keeps timekeeping consistent among all clock-dependent devices within the network so that the devices can provide diverse applications based on the consistent time

• Network Quality Analyzer (NQA)
Analyzes network performance and service quality by sending test packets, and provides network performance and service quality parameters such as jitter, TCP, or FTP connection delays and file transfer rates; allows a network manager to determine overall network performance and to diagnose and locate network congestion points or failures

• IEEE 802.1AB Link Layer Discovery Protocol (LLDP)
Advertises and receives management information from adjacent devices on a network, facilitating easy mapping by network management applications

Connectivity

• Jumbo frames
Allows high-performance backups and disaster-recovery systems with a maximum frame size of 12288 bytes

• Loopback
Supports internal loopback testing for maintenance purposes and an increase in availability; loopback detection protects against incorrect cabling or network configurations and can be enabled on a per-port or per-VLAN basis for added flexibility

• Monitor link
Collects statistics on performance and errors on physical links, increasing system availability

• Packet storm protection
Protects against unknown broadcast, unknown multicast, or unicast storms with user-defined thresholds

• Flow control
Provides back pressure using standard IEEE 802.3x, reducing congestion in heavy traffic situations

Security

• Access control list (ACL)
Supports powerful ACLs for both IPv4 and IPv6; filters traffic to prevent unauthorized users from accessing the network, or controls network traffic to save resources; rules can either deny or permit traffic to be forwarded; rules can be based on Layer 2 header or Layer 3 protocol header; rules can be set to operate on specific dates or times

• Remote Authentication Dial-In User Service (RADIUS)
Eases switch security access administration by using a password authentication server

• Secure shell (SSHv2)
Uses external servers to securely log in to a remote device; with authentication and encryption, it protects against IP spoofing and plain-text password interception; increases the security of Secure FTP (SFTP) transfers

• DHCP snooping
Helps ensure that DHCP clients receive IP addresses from authorized DHCP servers and maintain a list of DHCP entries for trusted ports; prevents reception of fake IP addresses and reduces ARP attacks, improving security
• IP Source Guard
Filters packets on a per-port basis, which prevents illegal packets from being forwarded

• ARP attack protection
Protects against attacks that use a large number of ARP requests, using a host-specific, user-selectable threshold

Multicast support
• Internet Group Management Protocol (IGMP)
Utilizes Any-Source Multicast (ASM) or Source-Specific Multicast (SSM) to manage IPv4 multicast networks; supports IGMPv1, v2, and v3

• Protocol Independent Multicast (PIM)
Defines modes of multicasting to allow one-to-many and many-to-many transmission of information; PIM Dense Mode (DM), Sparse Mode (SM), and Source-Specific Mode (SSM) are supported

Warranty and support
• 1-year Warranty:
See hpe.com/networking/warrantysummary for warranty and support information included with your product purchase

• Software releases:
To find software for your product, refer to hpe.com/networking/support; for details on the software releases available with your product purchase, refer to hpe.com/networking/warrantysummary

HPE FlexFabric 7900 Switch Series

Specifications

| I/O ports and slots | 4 I/O module slots
| Supports a maximum of 48 40GbE ports or 192 10GbE ports or 96 1/10GbE ports, or 8 100GbE ports, or a combination |
| 10 I/O module slots
| Supports a maximum of 120 40GbE ports or 480 10GbE ports or 240 1/10GbE ports, or 20 100GbE ports, or a combination |

| Power supplies | 2 power supply slots
| 1 minimum power supply required (ordered separately) |
| 4 power supply slots
| 1 minimum power supply required (ordered separately) |

| Fan tray | 2 fan tray slots
| JG684A for Front to Back airflow OR JG839A for Back to Front airflow |
| 2 fan tray slots
| JG843A for Front to Back airflow OR JG844A for Back to Front airflow |
Specifications (continued)

Physical characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>HPE FlexFabric 7904 Switch Chassis (JG682A)</th>
<th>HPE FlexFabric 7910 Switch Chassis (JG841A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>17.32(w) x 28.35(d) x 3.47(h) in. (44 x 72 x 8.81 cm) (2U height)</td>
<td>17.32(w) x 29.92(d) x 8.66(h) in. (43.99 x 76 x 22 cm) (5U height)</td>
</tr>
<tr>
<td>Weight</td>
<td>39.46 lb (17.9 kg) chassis only (no fan tray or power supplies)</td>
<td>63.49 lb (28.8 kg) chassis only (no fan tray or power supplies)</td>
</tr>
<tr>
<td>Full configuration weight</td>
<td>87.7 lb (39.78 kg)</td>
<td>156.97 lb (71.2 kg)</td>
</tr>
</tbody>
</table>

Memory and processor

| Module | Dual Core MIPS64 @ 1.2 GHz, 512 MB flash, 4 GB DDR2 SDRAM | Dual Core MIPS64 @ 1.0 GHz, 1 GB flash, 8 GB DDR2 SDRAM |

Mounting and enclosure

| Mounting and enclosure | Mounts in an EIA standard 19-inch rack or other equipment cabinet (hardware included); horizontal surface mounting only | Mounts in an EIA standard 19-inch rack or other equipment cabinet (hardware included); horizontal surface mounting only |

Performance

Throughput	Up to 2.3 Bpps (64-byte packets)	Up to 5.8 Bpps (64-byte packets)
Switching capacity	3.8 Tbps	9.6 Tbps
Routing table size	32768 entries (IPv4), 8192 entries (IPv6)	32768 entries (IPv4), 8192 entries (IPv6)
MAC address table size	262144 entries	262144 entries

Reliability

| Availability | 99.999% | 99.999% |

Environment

Operating temperature	32°F to 104°F (0°C to 40°C)	32°F to 104°F (0°C to 40°C)
Operating relative humidity	10% to 95%, noncondensing	10% to 95%, noncondensing
Nonoperating/Storage temperature	-40°F to 158°F (-40°C to 70°C)	-40°F to 158°F (-40°C to 70°C)
Nonoperating/Storage relative humidity	Up to 13.123 ft (4 km)	Up to 13.123 ft (4 km)
Altitude	Up to 13.123 ft (4 km)	Low-speed fan: 47.9 dB, High-speed fan: 77.9 dB
Acoustic	Low-speed fan: 57.6 dB, High-speed fan: 73.3 dB	Front-to-back or back-to-front (determined by installed fans)
Airflow direction	Front-to-back or back-to-front (determined by installed fans)	Front-to-back or back-to-front (determined by installed fans)

Electrical characteristics

AC voltage	100–120/200–240 VAC	100–240 VAC
Current	16/60 A	13 A
Power output	1800 W	1800 W
Frequency	50/60 Hz	50/60 Hz
Notes	Based on a common power supply of 1800 W (AC)	Based on a common power supply of 1800 W (AC)

Safety

| UL 60950-1; CAN/CSA 22.2 No. 60950-1; IEC 60950-1; EN 60950-1; FDA 21 CFR Subchapter J; AS/NZS 60950-1; RoHS Compliance | EN 50581 | UL 60950-1; CAN/CSA 22.2 No. 60950-1; IEC 60950-1; EN 60950-1; FDA 21 CFR Subchapter J; AS/NZS 60950-1; RoHS Compliance | EN 50581 |

Emissions

| VCCI Class A; EN 55022 Class A; CISPR 22 Class A; IEC/EN 61000-3-2; IEC/EN 61000-3-3; ICES-003 Class A; AS/NZS CISPR 22 Class A; FCC (CFR 47, Part 15) Class A; ETSI EN 300 386 | EN 50581 | VCCI Class A; EN 55022 Class A; CISPR 22 Class A; IEC/EN 61000-3-2; IEC/EN 61000-3-3; ICES-003 Class A; AS/NZS CISPR 22 Class A; FCC (CFR 47, Part 15) Class A; ETSI EN 300 386 |

Immunity

| Generic | EN 55024 | EN 55024 |

Management

| IMC—Intelligent Management Center; command-line interface; out-of-band management (serial RS-232C), SNMP Manager; Telnet; terminal interface (serial RS-232C); modem interface; IEEE 802.3 Ethernet MIB, Ethernet Interface MIB | IMC—Intelligent Management Center; command-line interface; out-of-band management (serial RS-232C), SNMP Manager; Telnet; terminal interface (serial RS-232C); modem interface; IEEE 802.3 Ethernet MIB, Ethernet Interface MIB |
Specifications (continued)

HPE FlexFabric 7904 Switch Chassis (JG682A)

Services

Refer to the Hewlett Packard Enterprise website at hpe.com/networking/services for details on the service-level descriptions and product numbers. For details about services and response times in your area, please contact your local Hewlett Packard Enterprise sales office.

HPE FlexFabric 7910 Switch Chassis (JG841A)

Services

Refer to the Hewlett Packard Enterprise website at hpe.com/networking/services for details on the service-level descriptions and product numbers. For details about services and response times in your area, please contact your local Hewlett Packard Enterprise sales office.

Standards and protocols

(applys to all products in series)

<table>
<thead>
<tr>
<th>BGP</th>
<th>RFC 1771 BGPv4</th>
<th>RFC 3065 Autonomous System</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 1772 Application of the BGP</td>
<td>RFC 3392 Capabilities Advertisement with BGP-4</td>
<td>RFC 4276 BGP-4 Implementation Report</td>
</tr>
<tr>
<td>RFC 1997 BGP Communities Attribute</td>
<td>RFC 4271 A Border Gateway Protocol 4 (BGP-4)</td>
<td>RFC 4277 Experience with the BGP-4 Protocol</td>
</tr>
<tr>
<td>RFC 1998 PPP Gandalff FZA Compression Protocol</td>
<td>RFC 4272 BGP Security Vulnerabilities Analysis</td>
<td>RFC 4360 BGP Extended Communities Attribute</td>
</tr>
<tr>
<td>RFC 2385 BGP Session Protection via TCP MDS</td>
<td>RFC 4273 Definitions of Managed Objects for BGP-4</td>
<td>RFC 4456 BGP Route Reflection: An Alternative to Full Mesh Internal BGP (IBGP)</td>
</tr>
<tr>
<td>RFC 2439 BGP Route Flap Damping</td>
<td>RFC 4274 BGP-4 Protocol Analysis</td>
<td></td>
</tr>
<tr>
<td>RFC 2796 BGP Route Reflection</td>
<td>RFC 4275 BGP-4 MIB Implementation Survey</td>
<td></td>
</tr>
<tr>
<td>RFC 2918 Route Refresh Capability</td>
<td>RFC 4277 Experience with the BGP-4 Protocol</td>
<td></td>
</tr>
</tbody>
</table>

Denial of service protection

- Automatic filtering of well-known denial-of-service packets
- CPU DoS Protection
- Rate Limiting by ACLs
- Multiple Software Images
 - SSHv1/SSHv2 Secure Shell

Device management

- RFC 1157 SNMPv1/v2c
- RFC 1305 NTPv3
- RFC 1902 (SNMPv2)
- RFC 2579 (SNMPv2 Text Conventions)
- RFC 2580 (SMIV2 Conformance)
- RFC 2819 (RMON Groups Alarm, Event, History, and Statistics only)
- HTTP, SSHv1, and Telnet
- Multiple Configuration Files
- Multiple Software Images
 - SSHv1/SSHv2 Secure Shell

General protocols

- IEEE 802.1ad Q-in-Q
- IEEE 802.1p Priority
- IEEE 802.1Q VLANs
- IEEE 802.1s Multiple Spanning Trees
- IEEE 802.1w Rapid Configuration of Spanning Tree
- IEEE 802.1x PAE
- IEEE 802.3ab 1000BASE-T
- IEEE 802.3ac (VLAN Tagging Extension)
- IEEE 802.3ad Link Aggregation Control Protocol (LACP)
- IEEE 802.3ae 10-Gigabit Ethernet
- IEEE 802.3af 10-Gigabit Ethernet
- IEEE 802.3f Point-to-Point Fiber (EFM-F)
- IEEE 802.3b 40 and 100 Gigabit Ethernet Architecture
- IEEE 802.3x Flow Control
- IEEE 802.3z 1000BASE-X
- RFC 768 UDP
- RFC 783 TFTP Protocol (revision 2)
- RFC 791 IPv6
- RFC 792 ICMP
- RFC 793 TCP
- RFC 826 ARP
- RFC 854 TELNET
- RFC 894 IP over Ethernet
- RFC 950 Internet Standard Subnetting
- RFC 1058 RIPv1
- RFC 1142 OSI IS-IS Inter-Domain Routing Protocol
- RFC 1195 OSI IS-IS for IP and Dual Environments
- RFC 1213 Management Information Base for Network Management of TCP/IP-based Internets
- RFC 1305 NTPv3
- RFC 1350 TFTP Protocol (revision 2)
- RFC 1393 TRACEROUTE Using an IP Option
- RFC 1519 CIDR
- RFC 1531 Dynamic Host Configuration Protocol
- RFC 1533 DHCP Options and BOOTP Vendor Extensions
- RFC 1591 DNS (client only)
- RFC 1624 Incremental Internet Checksum
- RFC 1701 Generic Routing Encapsulation
- RFC 1721 RIP-2 Analysis
- RFC 1723 RIPv2
- RFC 1812 IPv4 Routing
- RFC 2082 RIP-2 MSD Authentication
- RFC 2091 Trigger RIP
- RFC 2131 DHCP
- RFC 2138 Remote Authentication Dial In User
- RFC 2784 Generic Routing Encapsulation (GRE)
- RFC 2865 Remote Authentication Dial in User Service (RADIUS)
- RFC 2966 Domain-wide Prefix Distribution with Two-Level IS-IS
- RFC 2973 IS-IS Mesh Groups
- RFC 3277 IS-IS Transient Blackhole Avoidance
- RFC 3567 Intermediate System to Intermediate System (IS-IS) Cryptographic Authentication
- RFC 3719 Recommendations for Interoperable Networks using Intermediate System to Intermediate System (IS-IS)
- RFC 3784 IS-IS TE support
- RFC 3786 Extending the Number of IS-IS LSP Fragments Beyond the 256 Limit
- RFC 3787 Recommendations for Interoperable IP Networks Using Intermediate System to Intermediate System (IS-IS)
- RFC 3847 Restart signaling for IS-IS
- RFC 4251 The Secure Shell (SSH) Protocol Architecture
- RFC 4486 Subcodes for BGP Cease Notification Message
General protocols

<table>
<thead>
<tr>
<th>RFC</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>768</td>
<td>UDP</td>
</tr>
<tr>
<td>783</td>
<td>TFTP Protocol (revision 2)</td>
</tr>
<tr>
<td>791</td>
<td>IP</td>
</tr>
<tr>
<td>793</td>
<td>TCP</td>
</tr>
<tr>
<td>826</td>
<td>ARP</td>
</tr>
<tr>
<td>854</td>
<td>TELNET</td>
</tr>
<tr>
<td>894</td>
<td>IP over Ethernet</td>
</tr>
<tr>
<td>950</td>
<td>Internet Standard Subnetting Procedure</td>
</tr>
<tr>
<td>1027</td>
<td>Proxy ARP</td>
</tr>
<tr>
<td>1035</td>
<td>Domain Implementation and Specification</td>
</tr>
<tr>
<td>1042</td>
<td>IP Datagrams</td>
</tr>
</tbody>
</table>

IP multicast

<table>
<thead>
<tr>
<th>RFC</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>2236</td>
<td>IGMPv2</td>
</tr>
<tr>
<td>2283</td>
<td>Multiprotocol Extensions for BGP-4</td>
</tr>
<tr>
<td>2362</td>
<td>PIM Sparse Mode</td>
</tr>
<tr>
<td>3376</td>
<td>IGMPv3</td>
</tr>
<tr>
<td>3973</td>
<td>PIM Dense Mode</td>
</tr>
<tr>
<td>4541</td>
<td>Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches</td>
</tr>
</tbody>
</table>

IPv6

<table>
<thead>
<tr>
<th>RFC</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>1886</td>
<td>DNS Extension for IPv6</td>
</tr>
<tr>
<td>2444</td>
<td>Transmission of IPv6 over Ethernet Networks</td>
</tr>
<tr>
<td>3315</td>
<td>DHCPv6 (client and relay)</td>
</tr>
<tr>
<td>1887</td>
<td>IPv6 Unicast Address Allocation Architecture</td>
</tr>
<tr>
<td>2473</td>
<td>Generic Packet Tunneling in IPv6</td>
</tr>
<tr>
<td>3484</td>
<td>Default Address Selection for IPv6</td>
</tr>
<tr>
<td>3981</td>
<td>IPv6 Path MTU Discovery (v2 models only)</td>
</tr>
<tr>
<td>3513</td>
<td>IPv6 Addressing Architecture</td>
</tr>
<tr>
<td>2080</td>
<td>RIPvng for IPv6</td>
</tr>
<tr>
<td>2529</td>
<td>Transmission of IPv6 Packets over IPv4</td>
</tr>
</tbody>
</table>

MiBs

<table>
<thead>
<tr>
<th>RFC</th>
<th>MIB Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1156</td>
<td>(TCP/IP MIB)</td>
</tr>
<tr>
<td>1157</td>
<td>A Simple Network Management Protocol (SNMP)</td>
</tr>
<tr>
<td>1215</td>
<td>A Convention for Defining Traps for use with the SNMP</td>
</tr>
<tr>
<td>1493</td>
<td>Bridge MIB</td>
</tr>
<tr>
<td>1573</td>
<td>SNMP MIB II</td>
</tr>
<tr>
<td>1643</td>
<td>Ethernet MIB</td>
</tr>
<tr>
<td>1657</td>
<td>BGP-4 MIB</td>
</tr>
<tr>
<td>1907</td>
<td>SNMPv2 MIB</td>
</tr>
<tr>
<td>2011</td>
<td>SNMPv2-MIB for IP</td>
</tr>
<tr>
<td>2012</td>
<td>SNMPv2-MIB for TCP</td>
</tr>
<tr>
<td>2013</td>
<td>SNMPv2-MIB for UDP</td>
</tr>
<tr>
<td>2096</td>
<td>IP Forwarding Table MIB</td>
</tr>
<tr>
<td>2233</td>
<td>Interface MIB</td>
</tr>
<tr>
<td>2452</td>
<td>IPv6-TCMP-MIB</td>
</tr>
<tr>
<td>2454</td>
<td>IPv6-UDP-MIB RFC</td>
</tr>
<tr>
<td>2465</td>
<td>IPv6 MIB</td>
</tr>
<tr>
<td>2466</td>
<td>ICMPv6 MIB</td>
</tr>
<tr>
<td>2571</td>
<td>SNMP Framework MIB</td>
</tr>
<tr>
<td>2572</td>
<td>SNMP-MPD MIB</td>
</tr>
<tr>
<td>2573</td>
<td>SNMP-Notification MIB</td>
</tr>
<tr>
<td>2574</td>
<td>SNMP-Target MIB</td>
</tr>
<tr>
<td>2578</td>
<td>Structure of Management Information Version 2 (SMIV2)</td>
</tr>
<tr>
<td>2580</td>
<td>Conformance Statements for SMIV2</td>
</tr>
<tr>
<td>2620</td>
<td>RADIUS Accounting MIB</td>
</tr>
<tr>
<td>2665</td>
<td>Ethernet-Like-MIB</td>
</tr>
<tr>
<td>2668</td>
<td>802.3 MAU MIB</td>
</tr>
<tr>
<td>2674</td>
<td>802.1p and IEEE 802.1Q Bridge MIB</td>
</tr>
<tr>
<td>2787</td>
<td>VRRP MIB</td>
</tr>
<tr>
<td>2819</td>
<td>RMON MIB</td>
</tr>
<tr>
<td>2932</td>
<td>(Multicast Routing MIB)</td>
</tr>
<tr>
<td>2933</td>
<td>IGMP MIB</td>
</tr>
</tbody>
</table>

Standards and protocols (continued)

- RFC 768 UDP
- RFC 783 TFTP Protocol (revision 2)
- RFC 791 IP
- RFC 793 TCP
- RFC 826 ARP
- RFC 854 TELNET
- RFC 894 IP over Ethernet
- RFC 950 Internet Standard Subnetting Procedure
- RFC 1027 Proxy ARP
- RFC 1035 Domain Implementation and Specification
- RFC 1042 IP Datagrams
- RFC 2236 IGMPv2
- RFC 2283 Multiprotocol Extensions for BGP-4
- RFC 2362 PIM Sparse Mode
- RFC 3376 IGMPv3
- RFC 3973 PIM Dense Mode
- RFC 4541 Considerations for Internet Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD) Snooping Switches
- RFC 4601 PIM Sparse Mode
- RFC 4604 Using Internet Group Management Protocol Version 3 (IGMPv3) and Multicast Listener Discovery Protocol Version 2 (MLDV2) for Source-Specific Multicast
- RFC 4605 IGMP/MLD Proxying
- RFC 4607 Source-Specific Multicast for IP
- RFC 4608 RSVP for IPv6
- RFC 4609 DNS Extension for IPv6
- RFC 4861 IPv6 Neighbor Discovery
- RFC 4862 IPv6 Stateless Address Auto-configuration
- RFC 4863 IPv6 Neighbor Discovery
- RFC 4893 Transition Mechanisms for IPv6 Hosts and Routers
- RFC 4941 Privacy Extensions for Stateless Address Auto-configuration
- RFC 4947 IPv6 Transition Mechanisms for IPv4/6 Hosts and Routers
- RFC 4948 IPv6 Transition Mechanisms for IPv4/6 Routers
- RFC 4949 IPv6 Transition Mechanisms for IPv4/6 Gateways
- RFC 4950 IPv6 Transition Mechanisms for IPv4/6 Border Routers
- RFC 4951 IPv6 Transition Mechanisms for IPv4/6 Border Gateway Protocols
- RFC 4952 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4953 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4954 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4955 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4956 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4957 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4958 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4959 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4960 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4961 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4962 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4963 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4964 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4965 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4966 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4967 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4968 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4969 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4970 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4971 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4972 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4973 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4974 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4975 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4976 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4977 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4978 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4979 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4980 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4981 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4982 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4983 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4984 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4985 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4986 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4987 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4988 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4989 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4990 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4991 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4992 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4993 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4994 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4995 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4996 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4997 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4998 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 4999 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 5000 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 5001 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 5002 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 5003 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 5004 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 5005 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 5006 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 5007 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 5008 IPv6 Transition Mechanisms for IPv4/6 Border Gateways
- RFC 5009 Bootstrap Router (BSR) Mechanism for Protocol Independent Multicast (PIM)
Standards and protocols (continued)

<table>
<thead>
<tr>
<th>Standards</th>
<th>Protocols</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS</td>
<td>RFC 2205</td>
<td>Resource ReSerVation Protocol (RSVP)</td>
</tr>
<tr>
<td></td>
<td>RFC 2209</td>
<td>Resource ReSerVation Protocol (RSVP)</td>
</tr>
<tr>
<td></td>
<td>RFC 2283</td>
<td>Multiprotocol Extensions for BGP-4 (MPLS)</td>
</tr>
<tr>
<td></td>
<td>RFC 2961</td>
<td>RSVP Refresh Overhead Reduction Extensions</td>
</tr>
<tr>
<td></td>
<td>RFC 3031</td>
<td>Multiprotocol Label Switching Architecture</td>
</tr>
<tr>
<td></td>
<td>RFC 3032</td>
<td>MPLS Label Stack Encoding</td>
</tr>
<tr>
<td></td>
<td>RFC 3107</td>
<td>Carrying Label Information in BGP-4</td>
</tr>
<tr>
<td></td>
<td>RFC 3178</td>
<td>RSVP Advertisement</td>
</tr>
<tr>
<td></td>
<td>RFC 3479</td>
<td>Fault Tolerance for the Label Distribution Protocol (LDP)</td>
</tr>
<tr>
<td></td>
<td>RFC 4364</td>
<td>RSVP Refresh Overhead Reduction Extensions</td>
</tr>
<tr>
<td></td>
<td>RFC 5036</td>
<td>Multiprotocol Label Switching Architecture (MPLS)</td>
</tr>
</tbody>
</table>

Network management

<table>
<thead>
<tr>
<th>Standards</th>
<th>Protocols</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IEEE 802.1AB</td>
<td>Link Layer Discovery Protocol (LLDP)</td>
</tr>
<tr>
<td></td>
<td>RFC 1155</td>
<td>Structure of Management Information Base (MIB)</td>
</tr>
<tr>
<td></td>
<td>RFC 1157</td>
<td>SNMPv1</td>
</tr>
<tr>
<td></td>
<td>RFC 2211</td>
<td>Controlled-Load Network Element Service (ML-NE)</td>
</tr>
<tr>
<td></td>
<td>RFC 2819</td>
<td>Four groups of RMON: 1 (statistics), 2 (history), 3 (alarm), and 9 (events)</td>
</tr>
<tr>
<td></td>
<td>RFC 3178</td>
<td>RSVP Advertisement</td>
</tr>
<tr>
<td></td>
<td>RFC 3411</td>
<td>SNMP Management Frameworks</td>
</tr>
</tbody>
</table>

OSPF

<table>
<thead>
<tr>
<th>Standards</th>
<th>Protocols</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RFC 1245</td>
<td>OSPF protocol analysis</td>
</tr>
<tr>
<td></td>
<td>RFC 1246</td>
<td>Experience with OSPF</td>
</tr>
<tr>
<td></td>
<td>RFC 1765</td>
<td>OSPF Database Overflow</td>
</tr>
<tr>
<td></td>
<td>RFC 1850</td>
<td>OSPFv2 Management Information Base (MIB) traps</td>
</tr>
<tr>
<td></td>
<td>RFC 2154</td>
<td>OSPF w/Digital Signatures (Password, MD-5)</td>
</tr>
<tr>
<td></td>
<td>RFC 2328</td>
<td>OSPFv2</td>
</tr>
<tr>
<td></td>
<td>RFC 2370</td>
<td>OSPF Opaque LSA Option</td>
</tr>
<tr>
<td></td>
<td>RFC 3101</td>
<td>OSPF NSSA</td>
</tr>
</tbody>
</table>

QoS/CoS

<table>
<thead>
<tr>
<th>Standards</th>
<th>Protocols</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IEEE 802.1p</td>
<td>CoS: Type of Service in the Internet Protocol Suite</td>
</tr>
<tr>
<td></td>
<td>RFC 1349</td>
<td>Specification of the Controlled-Load Network Element Service</td>
</tr>
<tr>
<td></td>
<td>RFC 2211</td>
<td>Guaranteed Quality of Service (GQS)</td>
</tr>
</tbody>
</table>

Security

<table>
<thead>
<tr>
<th>Standards</th>
<th>Protocols</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IEEE 802.1x</td>
<td>Port Based Network Access Control (PBAC)</td>
</tr>
<tr>
<td></td>
<td>RFC 1321</td>
<td>The MDS Message-Digest Algorithm (MDM)</td>
</tr>
<tr>
<td></td>
<td>RFC 2082</td>
<td>RIP-2 MDS Authentication</td>
</tr>
<tr>
<td></td>
<td>RFC 2104</td>
<td>Keyed-Hashing for Message Authentication (KMP)</td>
</tr>
<tr>
<td></td>
<td>RFC 2408</td>
<td>Internet Security Association and Key Management Protocol (ISAKMP)</td>
</tr>
<tr>
<td></td>
<td>RFC 2409</td>
<td>The Internet Key Exchange (IKE)</td>
</tr>
<tr>
<td></td>
<td>RFC 2865</td>
<td>RADIUS Authentication</td>
</tr>
</tbody>
</table>

HPE FlexFabric 7900 Switch Series accessories

<table>
<thead>
<tr>
<th>Modules</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPE FlexFabric 7900 12-port 40GbE QSFP+ FX Module (JG683B)</td>
<td></td>
</tr>
<tr>
<td>HPE FlexFabric 7900 24-port 1/10GbE SFP+ FX Module (JG685A)</td>
<td></td>
</tr>
<tr>
<td>HPE FlexFabric 7900 2-port 10GbE CX/6-port 40GbE QSFP+/4-port 10GbE SFP+ FX Module (JH002A)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transceivers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPE X140 40 G QSFP+ MPO SM 40 km SM Transceiver (JG325B)</td>
<td></td>
</tr>
<tr>
<td>HPE X140 40 G QSFP+ MPO MM 30 m SM Transceiver (JG709A)</td>
<td></td>
</tr>
<tr>
<td>HPE X140 40 G QSFP+ LC ER4 50 km SM Transceiver (JL302A)</td>
<td></td>
</tr>
<tr>
<td>HPE X140 40 G QSFP+ LC LR4 50 km SM Transceiver (JL306A)</td>
<td></td>
</tr>
<tr>
<td>HPE X140 40 G QSFP+ LC LR4 40 km SM Transceiver (JL306A)</td>
<td></td>
</tr>
<tr>
<td>HPE X140 40 G QSFP+ LC ER4 30 km SM Transceiver (JL306A)</td>
<td></td>
</tr>
<tr>
<td>HPE X140 40 G QSFP+ LC ER4 40 km SM Transceiver (JL306A)</td>
<td></td>
</tr>
<tr>
<td>HPE X140 40 G QSFP+ LC ER4 50 km SM Transceiver (JL306A)</td>
<td></td>
</tr>
</tbody>
</table>
HPE FlexFabric 7900 Switch Series accessories (Continued)

Transceivers

- **HPE X2AD 40 G QSFP* to QSFP* 7 m Active Optical Cable (JL287A)**
- **HPE X2AD 40 G QSFP* to QSFP* 10 m Active Optical Cable (JL288A)**
- **HPE X2AD 40 G QSFP* to QSFP* 20 m Active Optical Cable (JL289A)**
- **HPE X150 100 G CXP MPO SR 100 m Multimode Transceiver (JG881A)**
- **HPE X2AD 100 G CXP To CXP 10 m Active Optical Cable (JG882A)**
- **HPE X2AD 100 G CXP To CXP 30 m Active Optical Cable (JG883A)**
- **HPE X130 10 G SFP* LC SR Transceiver (JD092B)**
- **HPE X130 10 G SFP* LC ER 40 km Transceiver (JD094B)**
- **HPE X130 10 G SFP* LC LH 80 km Transceiver (JD095B)**
- **HPE X240 10 G SFP* to SFP+ 0.65 m Direct Attach Copper Cable (JD095C)**
- **HPE X240 10 G SFP* to SFP+ 1.2 m Direct Attach Copper Cable (JD096C)**
- **HPE X240 10 G SFP* to SFP+ 3 m Direct Attach Copper Cable (JD097C)**
- **HPE X240 10 G SFP* to SFP+ 5 m Direct Attach Copper Cable (JD098C)**
- **HPE X240 10 G SFP* to SFP+ 7 m Direct Attach Copper Cable (JD099C)**
- **HPE X2AD 10 G SFP* to SFP+ 10 m Active Optical Cable (JL290A)**
- **HPE X2AD 10 G SFP* to SFP+ 20 m Active Optical Cable (JL291A)**
- **HPE X120 1 G SFP LC SX Transceiver (JD101B)**
- **HPE X120 1 G SFP LC LX Transceiver (JD102B)**
- **HPE X120 1 G SFP LC BX 10-U Transceiver (JD103B)**
- **HPE X120 1 G SFP LC BX 10-D Transceiver (JD104B)**
- **HPE X120 1 G SFP LC LH40 1310 nm Transceiver (JD061A)**
- **HPE X120 1 G SFP LC LH40 1550 nm Transceiver (JD062A)**
- **HPE X125 1 G SFP LC LH70 1510 Transceiver (JD105B)**
- **HPE X125 1 G SFP LC LH70 1550 Transceiver (JD106B)**
- **HPE X125 1 G SFP LC LH70 1570 Transceiver (JD107B)**
- **HPE X125 1 G SFP LC LH70 1590 Transceiver (JD108B)**
- **HPE X125 1 G SFP LC LH70 1610 Transceiver (JD109B)**
- **HPE X120 1 G SFP LC LH100 Transceiver (JD110B)**

Power supply

- **HPE FlexFabric 7900 1800 w AC Power Supply Unit (JG840A)**

Mounting kit

- **HPE X421 Chassis Universal 4-post Rack Mounting Kit (JC665A)**

HPE FlexFabric 7904 Switch Chassis (JG682A)

- **HPE FlexFabric 7904 Front (Port Side) to Back (Power Side) Airflow Fan Tray (JG684A)**
- **HPE FlexFabric 7904 Back (Power Side) to Front (Port Side) Airflow Fan Tray (JG685A)**

HPE FlexFabric 7910 Switch Chassis (JG841A)

- **HPE FlexFabric 7910 7.2Tbps Fabric/Main Processing Unit (JG842A)**
- **HPE FlexFabric 7910 2.4Tbps Fabric/Main Processing Unit (JH001A)**
- **HPE FlexFabric 7910 Front (Port Side) to Back (Power Side) Airflow Fan Tray (JG843A)**
- **HPE FlexFabric 7910 Back (Power Side) to Front (Port Side) Airflow Fan Tray JG844A**
- **HPE FlexFabric 7910 Cable Management Frame (JH041A)**
- **HPE FlexFabric 7910 Bottom-Support Rails (JH042A)**

Learn more at hpe.com/networking

Sign up for updates