

1

© 2013-2017 Hewlett-Packard Enterprise.

11 February 2017

For PostgreSQL 9.6

PostgreSQL Internals (1)

Hewlett Packard Enterprise Japan Co, Ltd.

Noriyoshi Shinoda

2

© 2013-2017 Hewlett-Packard Enterprise.

Acknowledgment

Satoshi Nagayasu (Uptime Technologies, LLC.) and Ryota Watabe (CO-Sol Inc.) gave me reviews

of this document before publishing its first edition. I received reviews from Akiko Takeshima, Tomoo

Takahashi, and Takahiro Kitayama in Hewlett-Packard Enterprise Japan, Technology Consulting

department. I really appreciated their support.

For updated edition, I received opinions from Satoshi, Ryota, Tomoo, Takahiro, and Akiko again. I

received a review from Tomoo, Takahiro, and Akiko for this third edition. To create the English

version, there was a devoted support from my family.

I would like to thank to everyone who develop open source software. I hope that this document will

be useful for engineers who use PostgreSQL.

16 July 2014 1st Edition (for PostgreSQL 9.3)

16 March 2015 2nd Edition (for PostgreSQL 9.4)

11 February 2017 3rd Edition (for PostgreSQL 9.6)

Noriyoshi Shinoda

Author

Noriyoshi Shinoda

 Hewlett-Packard Enterprise Japan Co, Ltd

 1990-2000 Digital Equipment Corporation Japan / Compaq Computer Japan

 2000-Current Hewlett-Packard Enterprise Japan

 10 years Software Development by C, C++, Java™ , Java Script, Perl, Visual C++®,

Visual Basic® and PHP on UNIX and Microsoft Windows environment

 16 years consultant of data-store for PostgreSQL, Oracle Database, Microsoft SQL Server,

Sybase ASE, JBoss Data Virtualization and HPE Vertica

 Wrote 15 books about Oracle Database administration and application development

 Oracle ACE

 Oracle Certified Master

 Mail: noriyoshi.shinoda@hpe.com

mailto:noriyoshi.shinoda@hpe.com

3

© 2013-2017 Hewlett-Packard Enterprise.

Index

Acknowledgment .. 2

Author .. 2

Index .. 3

Glossary ... 10

1. About This Document .. 12

1.1 Purpose ... 12

1.2 Audience ... 12

1.3 Scope .. 12

1.4 Software Version .. 12

1.5 Corresponding to the update request .. 12

1.6 Question, Comment, and Responsibility .. 12

1.7 Conversions ... 13

1.7.1 Conversion .. 13

1.7.2 Examples Notation .. 14

2. Process and Memory Architecture ... 15

2.1 Process Architecture ... 15

2.1.1 Process parent-child relationship ... 15

2.1.2 Process Names .. 16

2.1.3 Process and Signal ... 18

2.1.4 Starting and stopping the processes ... 28

2.1.5 Process configuration of the Microsoft Windows environment. 29

2.2 Memory Architecture ... 31

2.2.1 Shared buffer Overview ... 31

2.2.2 Implementation of the shared buffer .. 31

2.2.3 Huge Pages ... 32

2.2.4 Semaphore .. 34

2.2.5 Checkpoint .. 36

2.2.6 Ring Buffer ... 38

2.3 Operation at the time of instance startup / shutdown ... 39

2.3.1 Waiting for startup / shutdown completion ... 39

2.3.2 Instance parameter setting .. 41

2.3.3 Loading the external library .. 46

2.3.4 Behavior during instance stopping failure .. 47

2.3.5 Load library of instance startup ... 47

4

© 2013-2017 Hewlett-Packard Enterprise.

2.3.6 Major input and output files .. 48

2.3.7 Behavior at the time of Windows Service stop. .. 50

3. Storage Architecture .. 51

3.1 Structure of the Filesystem ... 51

3.1.1 Directory Structure .. 51

3.1.2 Database directory internals .. 52

3.1.3 TOAST feature .. 55

3.1.4 Relationship between TRUNCATE statement and file .. 57

3.1.5 FILLFACTOR attribute .. 59

3.2 Tablespace ... 61

3.2.1 What is tablespace? .. 61

3.2.2 Relationship between the database object and the file ... 62

3.3 File system and behavior .. 67

3.3.1 Protection mode of the database cluster ... 67

3.3.2 Update File ... 69

3.3.3 Visibility Map and Free Space Map ... 71

3.3.4 VACUUM behavior ... 73

3.3.5 Opened Files ... 83

3.3.6 Behavior of process (Writing WAL data) ... 85

3.3.7 Behavior of process (Writing by checkpointer) .. 88

3.3.8 Behavior of process (Writing by writer) ... 89

3.3.9 Behavior of process (archiver) .. 89

3.4 Online Backup ... 91

3.4.1 Behavior of online backup .. 91

3.4.2 Backup Label File .. 93

3.4.3 Online Backup with Replication Environment ... 95

3.4.4 Instance shutdown with online backup .. 95

3.5 File Format .. 97

3.5.1 Postmaster.pid ... 97

3.5.2 Postmaster.opts .. 98

3.5.3 PG_VERSION .. 98

3.5.4 Pg_control .. 99

3.5.5 pg_filenode.map .. 103

3.6 Block format.. 106

3.6.1 Block and Page .. 106

3.6.2 Tuple .. 107

5

© 2013-2017 Hewlett-Packard Enterprise.

3.7 Wraparound problem of transaction ID ... 110

3.7.1 Transaction ID .. 110

3.7.2 The parameters for the FREEZE processing .. 112

3.8 Locale specification .. 113

3.8.1 Specifying the locale and encoding .. 113

3.8.2 The use of the index by LIKE .. 115

3.8.3 Using the index by <, > operators... 116

3.8.4 Locale and encoding of the specified location ... 118

3.9 Data Checksum ... 119

3.9.1 Specifying the checksum ... 119

3.9.2 Checksum location ... 119

3.9.3 Checksum Error .. 120

3.9.4 Check the existence of checksum .. 121

3.10 Log File ... 122

3.10.1 Output of the log file .. 122

3.10.2 Log file name .. 122

3.10.3 Log Rotation ... 124

3.10.4 Contents of the log ... 125

3.10.5 Encoding of log file ... 126

4. Trouble Shooting ... 129

4.1 File deletion before startup instance ... 129

4.1.1 Deleted pg_control .. 129

4.1.2 Deleted WAL file ... 129

4.1.3 Behavior on data file deletion (Normal instance stop) ... 130

4.1.4 Behavior of data file deletion (Instance Crash / No data changed) 131

4.1.5 Behavior of data file deletion (Instance Crash / Updated) .. 133

4.1.6 Other files ... 134

4.2 Delete files in the instance running .. 135

4.2.1 Delete pg_control .. 135

4.2.2 Delete WAL .. 135

4.3 Process Failure .. 137

4.3.1 Behavior of the process abnormal termination .. 137

4.3.2 Behavior of the transaction at the process abnormal termination. 138

4.4 Other failure .. 139

4.4.1 Crash recovery .. 139

4.4.2 Instance abnormal termination during online backup .. 139

6

© 2013-2017 Hewlett-Packard Enterprise.

4.4.3 Failure of the archiving .. 140

5. Performance Related Information ... 144

5.1 Automatic statistical information collection .. 144

5.1.1 Timing .. 144

5.1.2 Conditions .. 144

5.1.3 The number of sample tuples .. 144

5.1.4 Information collected as statistics .. 147

5.1.5 Destination of the statistics ... 150

5.2 Automatic VACUUM ... 151

5.2.1 Interval ... 151

5.2.2 Conditions .. 151

5.2.3 Autovacuum worker process startup .. 151

5.2.4 Amount of usable memory ... 152

5.3 Execution Plan ... 153

5.3.1 EXPLAIN statement .. 153

5.3.2 Costs .. 154

5.3.3 Execution plan... 155

5.3.4 Execution time .. 159

5.3.5 Cost estimate of the empty table ... 159

5.3.6 Disk sort ... 160

5.3.7 Table sequential scan and index scan ... 163

5.3.8 BUFFERS parameter ... 165

5.4 Configuration Parameters ... 167

5.4.1 Parameters related to performance .. 167

5.4.2 Effective_cache_size parameter .. 167

5.4.3 Effective_io_concurrency parameter ... 167

5.5 System Catalog .. 169

5.5.1 Entity of the system catalog .. 169

6. Specification of SQL statements ... 170

6.1 Lock ... 170

6.1.1 Lock type .. 170

6.1.2 Acquisition of lock... 170

6.2 Partition Table ... 172

6.2.1 Partition Table Overview .. 172

6.2.2 Partition Table Implementation ... 172

6.2.3 Verify the execution plan .. 174

7

© 2013-2017 Hewlett-Packard Enterprise.

6.2.4 Constraint ... 178

6.2.5 Record move between partitions ... 178

6.2.6 Partition table and statistics .. 179

6.2.7 Partition table with External table ... 179

6.3 Sequence Object .. 182

6.3.1 Using the SEQUENCE object ... 182

6.3.2 Cache ... 183

6.3.3 Transaction ... 185

6.4 Bind variables and PREPARE statement .. 186

6.5 INSERT ON CONFLICT statement ... 188

6.5.1 Basic syntax of INSERT ON CONFLICT statement ... 188

6.5.2 Relation between ON CONFLICT Clause and Trigger .. 190

6.5.3 ON CONFLICT clause and Execution Plan ... 191

6.5.4 ON CONFLICT clause and the partition table .. 193

6.6 TABLESAMPLE ... 195

6.6.1 Overview .. 195

6.6.2 SYSTEMと BERNOULLI .. 195

6.6.3 Execution Plan .. 197

6.7 Changing a table attribute. .. 199

6.7.1 ALTER TABLE SET UNLOGGED .. 199

6.7.2 ALTER TABLE SET WITH OIDS .. 201

6.7.3 ALTER TABLE MODIFY COLUMN TYPE ... 202

6.8 ECPG.. 204

6.8.1 Format of the host variable ... 204

6.8.2 Behavior at the time of out-of-space .. 205

6.9 Parallel Query .. 207

6.9.1 Overview .. 207

6.9.2 Execution plan... 209

6.9.3 Parallel processing and functions .. 210

6.9.4 Calculation of the degree of parallelism ... 214

7. Privileges and object creation ... 216

7.1 Object Privileges .. 216

7.1.1 The owner of the tablespace ... 216

7.1.2 The owner of the database .. 216

7.2 Row Level Security .. 217

7.2.1 What’s Row Level Security .. 217

8

© 2013-2017 Hewlett-Packard Enterprise.

7.2.2 Preparation .. 217

7.2.3 Create POLICY object ... 218

7.2.4 Parameter Settings ... 221

8. Utilities ... 223

8.1 Utility usage .. 223

8.1.1 Pg_basebackup command .. 223

8.1.2 Pg_archivecleanup command ... 226

8.1.3 Psql command ... 227

8.1.4 Pg_resetxlog command .. 229

8.1.5 Pg_rewind command ... 230

8.1.6 Vacuumdb command .. 233

8.2 Exit status of Server/Client Applications .. 235

8.2.1 Pg_ctl command .. 235

8.2.2 Psql command ... 235

8.2.3 Pg_basebackup command .. 237

8.2.4 Pg_archivecleanup command ... 237

8.2.5 Initdb command .. 237

8.2.6 Pg_isready command ... 237

8.2.7 Pg_receivexlog command .. 238

9. System Configuration .. 239

9.1 Default Value of Parameters .. 239

9.1.1 Parameters derived at initdb command execution ... 239

9.2 Recommended Setting .. 240

9.2.1 Locale setting .. 240

9.2.2 Recommended parameter values ... 240

10. Streaming Replication .. 242

10.1 Mechanism of streaming replication .. 242

10.1.1 The streaming replication ... 242

10.1.2 Configuration of streaming replication .. 242

10.2 Construction of the replication environment ... 244

10.2.1 Replication Slot ... 244

10.2.2 Synchronous and asynchronous .. 247

10.2.3 Parameters .. 249

10.2.4 Recovery.conf file .. 250

10.3 Failover and Switchover ... 252

10.3.1 Procedure of switchover ... 252

9

© 2013-2017 Hewlett-Packard Enterprise.

10.3.2 Pg_ctl promote command ... 252

10.3.3 Promoted to the master by the trigger file .. 253

10.3.4 Log on a failure ... 253

11. Source code Tree ... 255

11.1 Directory Structure ... 255

11.1.1 Top directory ... 255

11.1.2 "src" directory ... 255

11.2 Build Environment ... 256

11.2.1 Configure command parameters .. 256

11.2.2 Make command parameters .. 256

12. Linux Operating System Configuration ... 257

12.1 Kernel Parameters .. 257

12.1.1 Memory Overcommit ... 257

12.1.2 I/O Scheduler .. 257

12.1.3 SWAP ... 257

12.1.4 Huge Pages ... 258

12.1.5 Semaphore .. 258

12.2 Filesystem Settings ... 258

12.2.1 When using the ext4 filesystem ... 258

12.2.2 When using the XFS filesystem .. 258

12.3 Core File Settings ... 259

12.3.1 CORE file output settings ... 259

12.3.2 Core administration with ABRT .. 259

12.4 User limits ... 261

12.5 systemd support ... 261

12.5.1 Service registration .. 261

12.5.2 Service start and stop ... 263

12.6 Others ... 265

12.6.1 SSH .. 265

12.6.2 Firewall... 265

12.6.3 SE-Linux .. 265

12.6.4 systemd ... 265

Appendix. Bibliography ... 266

Appendix.1 Books ... 266

Appendix 2. URL .. 267

Modification History ... 268

10

© 2013-2017 Hewlett-Packard Enterprise.

Glossary

Table 1 Glossary

Terminology Description

ACID Set of properties that database transactions should held

(Atomicity, Consistency, Isolation, Durability).

Contrib module Library that extends the PostgreSQL functions. A list of Contrib modules,

which can be used in a standard, is listed in the manual "Appendix F.

Additional Supplied Modules1".

ECPG Preprocessor for embedded SQL package for PostgreSQL.

EnterpriseDB Company, which develops and sells Postgres Plus.

GUC Memory area where PostgreSQL parameters are stored (Global Unified

Configuration).

OID (Object ID) ID number that identifies the object created in the internal database.

Unsigned 32-bit value.

PL/pgSQL One of the stored procedure language of PostgreSQL. It has a

compatibility to some extent with PL/SQL in Oracle Database.

Postgres Plus Commercial database products based on PostgreSQL.

PostgreSQL

Open source RDBMS product.

psql Utility to execute SQL statements included in PostgreSQL.

TID (Tuple ID) ID number that uniquely indicate a tuple in the table. It shows the physical

location of the tuple.

WAL PostgreSQL transaction log file (Write Ahead Logging)

XID (Transaction ID) ID number that uniquely identifies the transaction; unsigned 32-bit value

to distinguish the old and new tuple.

archive log

Copy of WAL used for recovery

system catalog Table that contains the meta-information of the entire PostgreSQL

database.

tuple

It indicates the records in the table.

1 https://www.postgresql.org/docs/9.6/static/contrib.html

https://www.postgresql.org/docs/9.6/static/contrib.html

11

© 2013-2017 Hewlett-Packard Enterprise.

Table 1 (Cont.) Glossary

Terminology Description

database cluster Directory where the management information of the entire PostgreSQL

database is stored.

relation

Same as table.

tablespace Directory on the file system in which the object is stored.

12

© 2013-2017 Hewlett-Packard Enterprise.

1. About This Document

1.1 Purpose
This document is written for PostgreSQL engineers. This document is intended to provide knowledge

about the "internal structure" and "operations that are not described in the manual" of PostgreSQL.

1.2 Audience
This document is written for engineers who have a knowledge of PostgreSQL such as installation,

basic management, etc.

1.3 Scope
The main scope of this document are the internal structure of storage, which PostgreSQL uses, and

internal operations not described in the manual. As this document is a material, which the author

summarizes the results of research for self-study, there are variations in the technical level and

completeness.

1.4 Software Version
This document is intended for the following versions of the software generally.

Table 2 Software Version

Software Version Note

PostgreSQL PostgreSQL 9.6 9.6.2

Operating System Red Hat Enterprise Linux 7 Update 1 (x86-64) 3.10.0-229

Microsoft Windows Server 2008 R2 Some part

1.5 Corresponding to the update request
This document will be updated if there is a request, but the time and contents have not been

determined.

1.6 Question, Comment, and Responsibility
The contents of this document is not an official opinion of the Hewlett-Packard Enterprise

Corporation. The author and affiliation company do not take any responsibility about the problem

caused by the mistake of contents. If you have any comments for this document, please contact to

Noriyoshi Shinoda (noriyoshi.shinoda@hpe.com).

mailto:noriyoshi.shinoda@hpe.com

13

© 2013-2017 Hewlett-Packard Enterprise.

1.7 Conversions

1.7.1 Conversion
A port surrounded by curly braces ({}) indicates that it is converted into some kind of string. This

document uses the following notation.

Table 3 Conversion

Conversion Meaning Example

{999999} An arbitrary number string 16495

{9} One-digit number 1

{ARCHIVEDFILE} archived WAL file name 0000000100000000000000A8

{ARCHIVEDIR} archived file output directory /usr/local/pgsql/archive

{BACKUPLABEL} Label string that is specified in the

online backup

pg_basebackup base backup

{BGWORKER} Custom Worker process name custom_worker

{DATE} Date and time string 2017-02-11_122532

{HOME} Home directory /home/postgres

{INSTALL} PostgreSQL software install directory /usr/local/pgsql

{MODULENAME} Name of Contrib module auto_explain

{OID} Any of the OID number 12993

{PARAMETER} Parameter name log_checkpoints

{PASSWORD} Password that does not appear secret

{PGDATA} Directory for the database cluster /usr/local/pgsql/data

{PGDATABASE} Database name datadb1

{PGUSER} Database user name user1

{PID} Process ID 3468

{PORT} Connection port number 5432

{RELFILENODE} File name that corresponds to the table,

heck the relfilenode column of pg_class

catalog

16531

{SERVICENAME} Red Hat Linux service name postgresql-9.6.2.service

{SLOT} Replication slot name slot_1

{SOURCE} Parameter settings source of macro

{SQL} Arbitrary of the SQL statement SELECT * FROM table1

{TABLE} Any of the table name table1

14

© 2013-2017 Hewlett-Packard Enterprise.

Table 3 Conversion (Cont.)

Conversion Meaning Example

{TABLESPACEDIR} directory name for tablespace /usr/local/pgsql/ts1

{TCP/IP (PORT)} Pair of TCP / IP address and port

number of client

192.168.1.100(65327)

{VERSION} Version number 9.6

{WALFILE} WAL filename 0000000100000000000000B0

{WALOFFSET} WAL offset string 5225832

{YYYYMMDDN} Format string 201608131

${string} Environment variable ${PGDATA}

1.7.2 Examples Notation
This document contains examples of the execution of the command or SQL statement. Examples

have been described using the following notation:

Table 4 Examples notation

Notation Description

shell prompt for Linux root user

$ shell prompt for Linux general user

Boldface user input string

postgres=# psql prompt for PostgreSQL administrator

postgres=> psql prompt for PostgreSQL general user

backend> prompt for PostgreSQL standalone mode

Italic comment in the examples

15

© 2013-2017 Hewlett-Packard Enterprise.

2. Process and Memory Architecture

2.1 Process Architecture

2.1.1 Process parent-child relationship
Process architecture of PostgreSQL is made up from multiple back-end processes whose parent

process is postmaster 2 . The process ID of the postmaster process is logged in the

{PGDATA}/postmaster.pid file. This file is deleted when the instance is successfully shutdown. The

database client makes a connection to the port on which the postmaster process is listening.

Figure 1 Process parent-child relationship

In the example below, process ID 2680 is the postmaster process. It is clear that all other processes

are child processes of the postmaster. Postmaster process receives a connection from the client and

authenticate it. Then postmaster start the postgres process as a child process to execute the SQL

statement.

2 The postgres process that becomes the parent of all processes is called "postmaster" by the historical

reasons.

Database Server

Instance

postmaster

writer logger

stats collector

postgres

Client Connection

postgres

postgres

wal writer

archiver

16

© 2013-2017 Hewlett-Packard Enterprise.

Example 1 Process parent-child relationchip

2.1.2 Process Names
PostgreSQL instance is configured multiple processes as described above. Part of the process name

changes by specifying the parameter update_process_title to "on" (default: "on"). The names of each

process that are referenced in the ps command are shown in the table below.

$ ps -ef | grep postgres | grep -v grep

postgres 2680 1 0 10:25 ? 00:00:00 /usr/local/pgsql/bin/postgres -D

/usr/local/pgsql/data

postgres 2681 2680 0 10:25 ? 00:00:00 postgres: logger process

postgres 2683 2680 0 10:25 ? 00:00:00 postgres: checkpointer process

postgres 2684 2680 0 10:25 ? 00:00:00 postgres: writer process

postgres 2685 2680 0 10:25 ? 00:00:00 postgres: wal writer process

postgres 2686 2680 0 10:25 ? 00:00:00 postgres: autovacuum launcher process

postgres 2687 2680 0 10:25 ? 00:00:00 postgres: stats collector process

17

© 2013-2017 Hewlett-Packard Enterprise.

Table 5 Process names

Process Process Name

postmaster {INSTALL}/bin/postgres -D {PGDATA}

logger postgres: logger process

checkpointer postgres: checkpointer process

writer postgres: writer process

wal writer postgres: wal writer process

autovacuum launcher postgres: autovacuum launcher process

autovacuum worker postgres: autovacuum worker process {PGDATABASE}

archiver postgres: archiver process last was {ARCHIVEDFILE}

stats collector postgres: stats collector process

postgres (local) postgres: {PGUSER} {PGDATABASE} [local] {SQL}

postgres (remote) postgres: {PGUSER} {PGDATABASE} {TCP/IP (PORT)} {SQL}

wal sender postgres: wal sender process {PGUSER} {TCP/IP (PORT)} streaming

{WALFILE}

postgres: wal sender process {PGUSER} {TCP/IP (PORT)} sending

backup "{BACKUP_LABEL}"

wal receiver postgres: wal receiver process streaming {WALFILE}

startup process postgres: startup process recovering {WALFILE}

bgworker postgres: bgworker: {BGWORKER}

parallel worker postgres: bgworker: parallel worker for PID {PID}

If you specify the parameter cluster_name, which is a new feature of PostgreSQL 9.5, a string that

has been specified as part of the process name is output. Below is an example when the "cluster1" is

specified to parameter cluster_name.

Example 2 cluster_name parameter

$ ps –ef | grep postgres

postgres 12364 1 0 06:14 pts/0 00:00:00 /usr/local/pgsql/bin/postgres -D data

postgres 12365 12364 0 06:14 ? 00:00:00 postgres: cluster1: logger process

postgres 12367 12364 0 06:14 ? 00:00:00 postgres: cluster1: checkpointer process

postgres 12368 12364 0 06:14 ? 00:00:00 postgres: cluster1: writer process

postgres 12369 12364 0 06:14 ? 00:00:00 postgres: cluster1: wal writer process

postgres 12370 12364 0 06:14 ? 00:00:00 postgres: cluster1: autovacuum launcher

process

postgres 12371 12364 0 06:14 ? 00:00:00 postgres: cluster1: stats collector

process

18

© 2013-2017 Hewlett-Packard Enterprise.

As you can see from this example, cluster name is not output in the process name of the postmaster

process. Characters that can be specified in the parameter cluster_name is limited to ASCII string

(0x20 ~ 0x7E). The other codes are output after being converted into a question mark (?).

2.1.3 Process and Signal
You can execute an action by sending a specific signal to the back-end process, which configure the

instance. Here the actions respond to the several signals are verified.

□ SIGKILL signal

The entire process, including the child processes is aborted when the postmaster process receives a

KILL signal. The postmaster.pid file is not deleted on this occasion. Although the following log is

recorded after instance reboot, instance starts normally.

Example 3 Restart log after an abnormal termination

When the postgres process terminate abnormally (including receive KILL signal), as well as the

appropriate process, it will be reset all the sessions that are connected from the client. All

transactions running on the instance is rolled back, become all SQL statements immediately after the

signal reception error. To safely stop the postgres process, to execute the pg_cancel_backend

function (sending a SIGINT signal), or pg_terminate_backend function (sending a SIGTERM

signal).

LOG: database system was interrupted; last known up at 2017-02-11 11:12:03 JST

LOG: database system was not properly shut down; automatic recovery in progress

LOG: redo starts at 0/155E118

FATAL: the database system is starting up

FATAL: the database system is starting up

LOG: invalid record length at 0/5A5C050: wanted 24, got 0

LOG: redo done at 0/5A5C018

LOG: last completed transaction was at log time 2017-02-11 12:25:15.443492+09

LOG: MultiXact member wraparound protections are now enabled

LOG: autovacuum launcher started

LOG: database system is ready to accept connections

19

© 2013-2017 Hewlett-Packard Enterprise.

Example 4 Log after receiving the KILL signal

Behavior when each back-end process receives a signal is as follows. SIG_IGN means signal

ignored, and SIG_DFL shows the default behavior of the Linux process.

□ Behavior at the signal receiving of postgres process

Operations at signal reception of the postgres process are as follows.

Table 6 Behavior of postgres process

Signal Signal Handler function Behavior

SIGHUP SigHupHandler Reload configuration file

SIGINT StatementCancelHandler Destruction of the running transactions

(Processing of pg_cancel_backend function)

SIGTERM die Destruction of the running transactions and exit

process (Processing of pg_terminate_backend

function)

SIGQUIT quickdie or die Forced termination

SIGALRM handle_sig_alarm Timeout occurrence notification

SIGPIPE SIG_IGN

SIGUSR1 procsignal_sigusr1_handler Database recovery

SIGUSR2 SIG_IGN

SIGFPE FloatExceptionHandler Output ERROR log

SIGCHLD SIG_DFL

LOG: server process (PID 3416) was terminated by signal 9: Killed

LOG: terminating any other active server processes

LOG: archiver process (PID 3404) exited with exit code 1

WARNING: terminating connection because of crash of another server process

DETAIL: The postmaster has commanded this server process to roll back the

current transaction and exit, because another server process exited abnormally

and possibly corrupted shared memory.

HINT: In a moment you should be able to reconnect to the database and repeat

your command.

LOG: all server processes terminated; reinitializing

20

© 2013-2017 Hewlett-Packard Enterprise.

□ Behavior at the signal receiving of autovacuum launcher process

Operations at signal reception of the autovacuum launcher process are as follows.

Table 7 Behavior of autovacuum launcher process

Signal Signal Handler function Behavior

SIGHUP avl_sighup_handler Reload configuration file

SIGINT StatementCancelHandler Detraction of the running transaction

SIGTERM avl_sigterm_handler Normal exit

SIGQUIT quickdie Output log and force termination

SIGALRM handle_sig_alarm Timeout occurrence notification

SIGPIPE SIG_IGN

SIGUSR1 procsignal_sigusr1_handler Execute recovery

SIGUSR2 avl_sigusr2_handler Exit operation for autovacuum worker

SIGFPE FloatExceptionHandler Output ERROR log

SIGCHLD SIG_DFL

□ Behavior at the signal receiving of bgworker process

Operations at signal reception of the bgworker launcher process are as follows.

Table 8 Behavior of bgworker process

Signal Signal Handler function Behavior

SIGHUP SIG_IGN

SIGINT StatementCancelHandler Detraction of the running transaction

SIG_IGN

SIGTERM bgworker_die Output FATAL error log

SIGQUIT bgworker_quickdie Forced termination

SIGALRM handle_sig_alarm Timeout occurrence notification

SIGPIPE SIG_IGN

SIGUSR1 procsignal_sigusr1_handler Execute recovery

bgworker_sigusr1_handler Call the latch_sigusr1_handler function

SIGUSR2 SIG_IGN

SIGFPE FloatExceptionHandler Output ERROR log

SIG_IGN

SIGCHLD SIG_DFL

21

© 2013-2017 Hewlett-Packard Enterprise.

□ Behavior at the signal receiving of writer process

Operations at signal reception of the writer launcher process are as follows.

Table 9 Behavior of writer process

Signal Signal Handler function Behavior

SIGHUP BgSigHupHandler Reload configuration file

SIGINT SIG_IGN

SIGTERM ReqShutdownHandler Normal exit

SIGQUIT bg_quickdie Forced exit

SIGALRM SIG_IGN

SIGPIPE SIG_IGN

SIGUSR1 bgwriter_sigusr1_handler Call the latch_sigusr1_handler function

SIGUSR2 SIG_IGN

SIGCHLD SIG_DFL

SIGTTIN SIG_DFL

SIGTTOU SIG_DFL

SIGCONT SIG_DFL

SIGWINCH SIG_DFL

□ Behavior at the signal receiving of checkpointer process

Operations at signal reception of the checkpointer launcher process are as follows.

22

© 2013-2017 Hewlett-Packard Enterprise.

Table 10 Behavior of checkpointer process

Signal Signal Handler function Behavior

SIGHUP ChkptSigHupHandler Reload configuration file

SIGINT ReqCheckpointHandler Request of the checkpoint execution

SIGTERM SIG_IGN

SIGQUIT chkpt_quickdie Forced exit

SIGALRM SIG_IGN

SIGPIPE SIG_IGN

SIGUSR1 chkpt_sigusr1_handler Call the latch_sigusr1_handler function

SIGUSR2 ReqShutdownHandler Close WAL file and exit normally

SIGCHLD SIG_DFL

SIGTTIN SIG_DFL

SIGTTOU SIG_DFL

SIGCONT SIG_DFL

SIGWINCH SIG_DFL

When you send a SIGINT signal to checkpointer process, the checkpoint will be executed. However,

in case of using this way, log will not be output the parameter log_checkpoints is specified as "on".

Pg_stat_bgwriter catalog will be updated.

□ Behavior at the signal receiving of stats collector process

Operations at signal reception of the stats collector process are as follows.

23

© 2013-2017 Hewlett-Packard Enterprise.

Table 11 Behavior of stats collector process

Signal Signal Handler function Behavior

SIGHUP pgstat_sighup_handler Reload configuration file.

SIGINT SIG_IGN

SIGTERM SIG_IGN

SIGQUIT pgstat_exit Normal exit

SIGALRM SIG_IGN

SIGPIPE SIG_IGN

SIGUSR1 SIG_IGN

SIGUSR2 SIG_IGN

SIGCHLD SIG_DFL

SIGTTIN SIG_DFL

SIGTTOU SIG_DFL

SIGCONT SIG_DFL

SIGWINCH SIG_DFL

□ Behavior at the signal receiving of postmaster process

 Operations at signal reception of the postmaster process are as follows.

24

© 2013-2017 Hewlett-Packard Enterprise.

Table 12 Behavior of postmaster process

Signal Signal Handler function Behavior

SIGHUP SIGHUP_handler Reload configuration file

Send SIGHUP signal to the child process

SIGINT pmdie FAST shutdown

SIGTERM pmdie SMART shutdown

SIGQUIT pmdie IMMEDIATE shutdown

SIGALRM SIG_IGN

SIGPIPE SIG_IGN

SIGUSR1 sigusr1_handler Signal reception processing from the child process

SIGUSR2 dummy_handler Does nothing

SIGCHLD reaper Processing at the end of a child process

Restart the back-end process

SIGTTIN SIG_IGN

SIGTTOU SIG_IGN

SIGXFSZ SIG_IGN

When you send SIGHUP signal to the postmaster process, postgresql.conf file

(postgresql.auto.conf, and pg _ *. conf file, as well) is reloaded. This is the same behavior as the

execution of pg_ctl reload command. The following log is output.

Example 5 Log output of re-read configuration file

□ Behavior at the signal receiving of startup process startup

Operations at signal reception of the startup process are as follows.

LOG: received SIGHUP, reloading configuration files

25

© 2013-2017 Hewlett-Packard Enterprise.

Table 13 Behavior of startup process

Signal Signal Handler function Behavior

SIGHUP StartupProcSigHupHandler Reload configuration file

SIGINT SIG_IGN

SIGTERM StartupProcShutdownHandler Exit process

SIGQUIT startupproc_quickdie Exit process abnormally

SIGALRM handle_sig_alarm Timeout occurrence notification

SIGPIPE SIG_IGN

SIGUSR1 StartupProcSigUsr1Handler Call latch_sigusr1_handler function

SIGUSR2 StartupProcTriggerHandler Finish recovery operation, promote to master

instance

SIGCHLD SIG_DFL

SIGTTIN SIG_DFL

SIGTTOU SIG_DFL

SIGCONT SIG_DFL

SIGWINCH SIG_DFL

□ Behavior at the signal receiving of logger process startup

Operations at signal reception of the logger process are as follows.

26

© 2013-2017 Hewlett-Packard Enterprise.

Table 14 Behavior of logger process

Signal Signal Handler function Behavior

SIGHUP sigHupHandler Reload configuration file

Reconfirm the log settings and create directory for log

SIGINT SIG_IGN

SIGTERM SIG_IGN

SIGQUIT SIG_IGN

SIGALRM SIG_IGN

SIGPIPE SIG_IGN

SIGUSR1 sigUsr1Handler Execute log rotation

SIGUSR2 SIG_IGN

SIGCHLD SIG_DFL

SIGTTIN SIG_DFL

SIGTTOU SIG_DFL

SIGCONT SIG_DFL

SIGWINCH SIG_DFL

□ Behavior at the signal receiving of "wal writer process startup

Operations at signal reception of the wal writer process are as follows.

27

© 2013-2017 Hewlett-Packard Enterprise.

Table 15 Behavior of wal writer process

Signal Signal Handler function Behavior

SIGHUP WalSigHupHandler Reload configuration file

SIGINT WalShutdownHandler Exit process normally

SIGTERM WalShutdownHandler Exit process normally

SIGQUIT wal_quickdie Exit process immediately

SIGALRM SIG_IGN

SIGPIPE SIG_IGN

SIGUSR1 walwriter_sigusr1_handler Call latch_sigusr1_handler function

SIGUSR2 SIG_IGN

SIGCHLD SIG_DFL

SIGTTIN SIG_DFL

SIGTTOU SIG_DFL

SIGCONT SIG_DFL

SIGWINCH SIG_DFL

□ Behavior at the signal receiving of archiver process startup

Operations at signal reception of the archiver process are as follows.

Table 16 Behavior of archiver process

Signal Signal Handler function Behavior

SIGHUP ArchSigHupHandler Reload configuration file

SIGINT SIG_IGN

SIGTERM ArchSigTermHandler Exit process normally

SIGQUIT pgarch_exit Exit process immediately

SIGALRM SIG_IGN

SIGPIPE SIG_IGN

SIGUSR1 pgarch_waken Execute archive the wal file

SIGUSR2 pgarch_waken_stop Stop archiving

SIGCHLD SIG_DFL

SIGTTIN SIG_DFL

SIGTTOU SIG_DFL

SIGCONT SIG_DFL

SIGWINCH SIG_DFL

28

© 2013-2017 Hewlett-Packard Enterprise.

2.1.4 Starting and stopping the processes
Checkpointer, writer, and stats collector processes are always started. Start / stop timing of other

processes is as follows. The child processes of postmaster check regularly for the presence of their

parent process; postmaster and they terminate their own process when the stoppage of the postmaster

process is detected.

Table 17 Start-up and stopping the processes

Process Start / stop timing

logger Start-up in the case where parameter logging_collector to "on" (default:

"off")

autovacuum launcher Start-up in the case where parameter autovacuum to "on" (default: "on")

autovacuum worker Autovacuum launcher process is started with the interval specified by the

parameter autovacuum_naptime (default: "1min"); it stops after completing

the work

archiver Start-up in the case of stand-alone or in replication environment of the

master instance, parameter archive_mode to "on" or "always" (default:

"off"). In slave instance of replication environment, start-up only if the

archive_mode to "always"

postgres (local) Start with the local connection of the client, and stop on disconnect.

postgres (remote) Start with the remote connection of the client, and stop on disconnect.

wal sender ○ It starts in the master instance of streaming replication environment.

Starts when slave instances come to connect, and stops when slave

instances disconnect.

○ Starts during the backup by pg_basebackup command, and stop with

the completion of the backup.

wal receiver Starts in the slave instance of streaming replication environment. When the

master instance is stopped, it automatically stops. Restarts when the master

instance is restarted.

startup process Always start in the slave instance of streaming replication environment.

wal writer It does not start in the slave instance of the replication environment. Except

for this situation, it always starts.

bgworker Behavior is changed according to the specifications of the custom process.

parallel worker Starting at the time of Parallel Query run, stop at the time of SQL execution

is completed.

29

© 2013-2017 Hewlett-Packard Enterprise.

□ Number of autovacuum worker process

As you can see from its process name, autovacuum worker process is started for each database. The

maximum number of the started process is determined by the parameters autovacuum_max_workers

(default: 3). Each worker process performs the processing on a table-by-table basis.

□ Number of postgres process

Postgres process starts automatically when the client connects. The maximum number of postgres

process is limited to the parameter max_connections (default: 100).

Number of the connection, which general users that do not have a SUPERUSER privileges can

connect, is the results of the calculation of "max_connections - superuser_reserved_connections

(default: 3)". Following log is output with the connection request with exceed this limit.

Example 6 Excess of the connection number from a general user

Example 7 Excess of the connection number specified in the parameter max_connections

2.1.5 Process configuration of the Microsoft Windows environment.
PostgreSQL running on Microsoft Windows will be run as a Windows Service. Execution image,

which is registered as a Windows Service is pg_ctl.exe. Postgres.exe is executed as a child process of

pg_ctl.exe, it runs as postmaster. The following figure shows the parent-child relationship of the

process in the Windows environment.

FATAL: remaining connection slots are reserved for non-replication

superuser connections

FATAL: sorry, too many clients already

30

© 2013-2017 Hewlett-Packard Enterprise.

Figure 2 Process configuration of the Microsoft Windows environment.

31

© 2013-2017 Hewlett-Packard Enterprise.

2.2 Memory Architecture

2.2.1 Shared buffer Overview
PostgreSQL saves the cache blocks in the memory area called "shared buffer", and they are shared

among multiple back-end processes. Shared buffer that PostgreSQL instance uses is configured by

System V Shared Memory (shmget system call) and the memory-mapped file (mmap system call). For

the locking process to cooperation between each process, System V Semaphores are utilized. The

number of the semaphore set is not changed even if the number of the connecting client increases.

Example 8 Status of the shared memory

 When an instance is aborted, shared memory and semaphores remain occasionally, though, restart of

the instance is done successfully.

2.2.2 Implementation of the shared buffer
System V Shared Memory in Linux environment is created using the shmget system call. For the

creation of the System V Shared Memory, a unique key number and size on the host must be specified.

The key number is generated using the following formula. If the key is already in use, PostgreSQL

$ ipcs –a

------ Shared Memory Segments --------

key shmid owner perms bytes nattch status

0x00530201 2621440 postgres 600 56 5

------ Semaphore Arrays --------

key semid owner perms nsems

0x00530201 19038210 postgres 600 17

0x00530202 19070979 postgres 600 17

0x00530203 19103748 postgres 600 17

0x00530204 19136517 postgres 600 17

0x00530205 19169286 postgres 600 17

0x00530206 19202055 postgres 600 17

0x00530207 19234824 postgres 600 17

0x00530208 19267593 postgres 600 17

------ Message Queues --------

key msqid owner perms used-bytes messages

32

© 2013-2017 Hewlett-Packard Enterprise.

search a free number while incrementing the value. This process is done in the

PGSharedMemoryCreate function in the source code (src/backend/port/sysv_shmem.c).

Formula 1 Shared Memory Key

Since the standard port number waiting for a connection (parameter port) is 5,432, key of the

shared memory is 5,432,001 (= 0x52e2c1). In PostgreSQL 9.3 or later, the memory volume, which is

created as a System V Shared Memory, is the size of the structure PGShmemHeader

(src/include/storage/pg_shmem.h). Most of the shared buffer used for tables and indexes are created

in the memory-mapped file (mmap system call). The size of the memory area that is created by

mmap is the sum of 100KB and calculated value from various parameters. In the Windows

environment, the shared memory is configured by CreateFileMapping system call

(src/backend/port/win32_shmem.c).

2.2.3 Huge Pages
In Linux environment equipped with large-scale memory Huge Pages feature can be utilized to

reduce the memory management load. Adaptation to Huge Pages is a new feature of PostgreSQL 9.4,

and it is determined by the parameters huge_pages. Page size when using Huge Pages is 2 MB (2 ×

1,024 × 1,024 bytes). If you use Huge Pages, the size of the shared memory to be reserved is adjusted

to a multiple of 2 MB based on the calculated value, and MAP_HUGETLB macro is specified to

mmap system call.

□ Parameter setting for Huge Pages features

In order to use the Huge Pages features as the shared memory used by PostgreSQL, parameters

huge_pages is set.

Table 18 Value that can be specified in the parameter huge_pages

Value Description Note

on Forced to use a Huge Pages.

off Do not use a Huge Pages.

try Try the use of Huge Pages, use it if possible Default value

If you specify a "try", the default values, it attempts to create a shared memory by specifying the

MAP_HUGETLB macro to mmap system call. If it fails, shared memory is re-created by deleting the

Shared Memory Key = parameter "port" * 1000 + 1

33

© 2013-2017 Hewlett-Packard Enterprise.

MAP_HUGETLB macro. When "on" is specified to this parameter, Huge Pages is used forcibly. If the

platform does not support Huge Pages, pg_ctl command cannot start instance and outputs the

following error message.

Example 9 Error message

□ How to setup the Huge Pages environment

To enable Huge Pages in a Linux environment, specify the maximum number of pages counted using

the 2 MB unit to the kernel parameters vm.nr_hugepages. The default value of this parameter is "0".

The information of Huge Pages in use can be referred in /proc/meminfo file.

Example 10 Setup Huge Pages environment on Linux

 If the pages required on instance startup cannot be reserved while the parameter huge_pages to "on"

is specified, following error occurs and the instance cannot start.

FATAL: huge pages not supported on this platform

sysctl –a | grep nr_hugepages

vm.nr_hugepages = 0

vm.nr_hugepages_mempolicy = 0

sysctl –w vm.nr_hugepages = 1000

vm.nr_hugepages = 1000

grep ^Huge /proc/meminfo

HugePages_Total: 1000

HugePages_Free: 1000

HugePages_Rsvd: 0

HugePages_Surp: 0

Hugepagesize: 2048 kB

34

© 2013-2017 Hewlett-Packard Enterprise.

Example 11 Huge Pages page shortage error

Notice

□ Calculation of the required memory area as Huge Pages

Volume of the shared memory, which PostgreSQL instances use, is calculated from the value of some

parameters. A about 10 to 50 MB is added to the volume of parameter shared_buffers and parameter

wal_buffers. This additional amount of memory is calculated from parameters max_worker_processes,

autovacuum_max_workers, etc. For the kernel parameter vm.nr_hugepages, specify this value with

rounding off 2 MB unit.

In order to know the accurate required amount of shared memory, start the instance by specifying

DEBUG3 to the parameter log_min_messages. The following message is output to the instance startup

log (specified by pg_ctl -l).

Example 12 Shared memory required capacity

2.2.4 Semaphore
Semaphore has been used for lock control to prevent resource contention between the back-end

processes. In PostgreSQL, semaphore sets, whose number is calculated from the following parameters,

In Red Hat Enterprise Linux 6.4, because due to the lack of MAP_HUGETLB

macro in the header file, Huge Pages non-compliant binary is created when

you build from the source code. At the time of binary creation, please

check if following line is in the /usr/include/bits/mman.h.

define MAP_HUGETLB 0x40000 /* Create huge page mapping. */

$ pg_ctl -D data start -w

server starting

FATAL: could not map anonymous shared memory: Cannot allocate memory

HINT: This error usually means that PostgreSQL's request for a shared

memory segment exceeded available memory, swap space or huge pages. To

reduce the request size (currently 148324352 bytes), reduce PostgreSQL's

shared memory usage, perhaps by reducing shared_buffers or

max_connections.

DEBUG: invoking IpcMemoryCreate(size=148324352)

35

© 2013-2017 Hewlett-Packard Enterprise.

are created at the instance startup.

Formula 2 Number of Semaphore Sets

Each semaphore set contains 17 pieces of semaphore. In the case of Red Hat Enterprise Linux 6, the

default value of the semaphore-related kernel parameters are ensured to include a sufficient amount

for the database with the maximum number of sessions of about 1,000. If the semaphore-related kernel

parameters are insufficient, following error occurs and the instance cannot start.

Example 13 Semaphore-related insufficient resources error

 Key of the semaphore set is created using the same logic as the key of the shared memory

(src/backend/port/sysv_sema.c). In the Microsoft Windows environment, a semaphore feature is

created using CreateSemaphore of Windows API (src/backend/port/win32_sema.c).

Number of maximum backend processes =

max_connections + autovacuum_max_workers + 1 + max_worker_processes

Number of semaphore sets = CEIL(# of maximum backend processes/17 + 1)

$ pg_ctl -D data start –w

waiting for server to start....

FATAL: could not create semaphores: No space left on device

DETAIL: Failed system call was semget(5440029, 17, 03600).

HINT: This error does *not* mean that you have run out of disk space.

It occurs when either the system limit for the maximum number of semaphore

sets (SEMMNI), or the system wide maximum number of semaphores (SEMMNS),

would be exceeded. You need to raise the respective kernel parameter.

Alternatively, reduce PostgreSQL's consumption of semaphores by reducing

its max_connections parameter.

 The PostgreSQL documentation contains more information about

configuring your system for PostgreSQL.

.... stopped waiting

pg_ctl: could not start server

Examine the log output.

36

© 2013-2017 Hewlett-Packard Enterprise.

2.2.5 Checkpoint
The point at which the memory and storage to guarantee the persistence by synchronized, called a

checkpoint. The pages that have been modified on a shared memory in order to create a checkpoint

writes to storage. Checkpoint will occur in several timing.

□ Occurrence trigger of checkpoint

 Checkpoint occurs in the following cases:

 Execution of CHECKPOINT statement

When the administrator runs the CHECKPOINT statement.

 With the interval specified in parameter checkpoint_timeout

By default, it runs at 300 seconds (5 minutes) interval.

 Amount of data written to the WAL has reached a parameter max_wal_size.

If the WAL data has been written to the amount specified in the parameter (default: 1GB).

 At the start of online backup

At the execution of pg_start_backup function

At the execution of pg_basebackup command

 At the shutdown of instance

Except for the pg_ctl stop -m immediate command execution

 At the time of database configuration

At the execution the CREATE DATABASE / DROP DATABASE statement

□ Completion of the process at checkpoint

There are two types of checkpoint. One is Regular Checkpoint generated at a certain time interval of

the number of the WAL files, another is the Immediate Checkpoint at the time of instance stop or the

issuance of the CHECKPOINT statement. For the process of Regular Checkpoint, a function not to

write the dirty buffer at once, but to distribute processing to a certain period is provided. By setting

the parameter checkpoint_completion_target, you can specify the percentage of time during which the

process will be completed by the next checkpoint (specified in the parameter checkpoint_timeout). As

the default value is 0.5, checkpoint will be completed within 50% of the time until the next checkpoint

starts.

37

© 2013-2017 Hewlett-Packard Enterprise.

Figure 3 Completion of checkpoint

 To check the progress, Autovacuum process compares the ratio of the number of the blocks write

completed to that required to be written and the checkpoint interval (parameter checkpoint_timeout).

If there is a margin for the amount to be written, Autovacuum process stops the processing for the 100

millisecond and resume it. This decision is done in IsCheckpointOnSchedule function

(src/backend/postmaster/checkpointer.c).

□ The parameters for the checkpoint

 Parameters for the checkpoint is as follows.

Table 19 The parameters for the checkpoint

Parameters Description Default Value

checkpoint_timeout Checkpoint interval 5min

bgwriter_delay writer process write interval 200ms

bgwriter_lru_maxpages The number of write pages by writer process 100

bgwriter_lru_multiplier Multiple value of the number of write pages of

writer process

2.0

checkpoint_completion_target Ratio to complete the checkpoint before the

next checkpoint time

0.5

log_checkpoints Write the checkpoint information to the log off

full_page_writes Write an entire page to WAL on update

immediately after checkpoint

on

t

Start CHECKPOINT

Complete CHECKPOINT

Start CHECKPOINT

checkpoint_completion_target

t

checkpoint_timeout

38

© 2013-2017 Hewlett-Packard Enterprise.

2.2.6 Ring Buffer
When Sequential scan for a table or bulk retrieval by COPY TO sentence is executed, the active page

on the shared buffer might be deleted from the memory. Therefore, in the case such that a sequential

scan is performed to the table which has the accessed table size more than 1/4 of the shared buffer,

ring buffer which circulates a part of the shared buffer is utilized. The size of the created ring buffer

cannot be changed because it is fixed on the source code.

Table 20 Size of ring buffer

Operation Size SQL

Bulk Read 256 KB Seq Scan

CREATE MATERIALIZED VIEW

Bulk Write 16 MB CREATE TABLE AS

COPY FROM

VACUUM 256 KB VACUUM

The size of the ring buffer that is actually created is the smaller one between the 1/8 of the shared

buffer and the size of the above table (src/backend/storage/buffer/freelist.c). Details of the ring

buffer is described in the README (src/backend/storage/buffer/README) file.

39

© 2013-2017 Hewlett-Packard Enterprise.

2.3 Operation at the time of instance startup / shutdown
Startup/Shutdown behavior of instances, are summarizes below.

2.3.1 Waiting for startup / shutdown completion
Pg_ctl command is used to manage the instance. With pg_ctl command, you can specify the -w

parameter to wait for completion of the process or -W parameter that do not wait for it. As described

in the manual, -W parameter is the default at instance startup / restart, whereas -w parameter is default

at instance shutdown (https://www.postgresql.org/docs/9.6/static/app-pg-ctl.html).

Table 21 Behavior during instance operation by pg_ctl command

Operation Default behavior Note

start Asynchronous (-W)

restart Asynchronous (-W) Stop process is synchronized

stop Synchronous (-w)

Time-out period in the case of performing the wait is specified by the -t parameter. Default value is

60 seconds. Status is checked every second, and it is repeated until the timeout.

□ Behavior of instance startup

Instance startup by "pg_ctl start" command does not wait for the completion of the startup unless

-w parameter is specified. For the start of the postmaster process, only the return value of the

"system" (3) function is checked (other than Windows). Further, under the Windows environment,

though the Windows API CreateRestrictedProcess is running, the return value is not checked. For

this reason, in the case the startup error occurs, the return value of the pg_ctl command becomes

zero.

https://www.postgresql.org/docs/9.6/static/app-pg-ctl.html

40

© 2013-2017 Hewlett-Packard Enterprise.

Example 14 Behavior of instance startup failure

□ A wait in the replication environment

If you specify the "-m smart" parameter3 when instance stops, it waits for the disconnection of the

client until the time-out. However, since the connection by the slave instance in a replication

environment is not considered as a client, instance can be stopped even if a connection from the

slave is made.

Example 15 "-m smart" parameters of the replication environment

3 The default value for the -m parameter has been changed to fast from smart in PostgreSQL 9.5.

$ pg_ctl -D data start

server starting

LOG: redirecting log output to logging collector process

HINT: Future log output will appear in directory "pg_log".

$ pg_ctl -D data start -- start 2 times for the same cluster (result in errors)

pg_ctl: another server might be running; trying to start server anyway

server starting

FATAL: lock file "postmaster.pid" already exists

Is another postmaster (PID 3950) running in data directory

"/usr/local/pgsql/data"?

$ echo $? -- status of pg_ctl command is 0

0

postgres=# SELECT state FROM pg_stat_replication ;

 state

 streaming

(1 row)

postgres=# \q

$ pg_ctl stop -D data -m smart

waiting for server to shut down...... done

server stopped

41

© 2013-2017 Hewlett-Packard Enterprise.

When the slave instance that is not a hot-standby state (hot_standby = off) to start in waiting (-w)

setting, does not command is completed until the timeout (60 seconds by default). This is because

the pg_ctl command has confirmed the start of the instance using the PQping function.

Example 16 Start-up of the slave instance is not a hot-standby.

2.3.2 Instance parameter setting
When an instance starts, {PGDATA}/postgresql.conf file is read, and parameters are set. After that

{PGDATA}/postgresql.auto.conf file is read and parameters are overwritten.

To get a list of the parameters, search the pg_settings catalog or execute the "show all" command

from psql utility. In the source column of the pg_settings catalog, information of the source of the

parameter settings are provided. Column values below are "GucSource_Names" enum value defined

within the source code src/backend/utils/misc/guc.c. In fact, it is accessed using the macros that are

defined in the enum GucSource (PGC_S_{SOURCE}). Enum values are defined in the source code

src/include/utils/guc.h.

$ grep hot_standby data.stdby/postgresql.conf

hot_standby = off

$ pg_ctl -D data.stdby start -w

waiting for server to start....

LOG: redirecting log output to logging collector process

HINT: Future log output will appear in directory "pg_log".

... stopped waiting

server is still starting up

$ echo $?

0

42

© 2013-2017 Hewlett-Packard Enterprise.

Table 22 Source column values in pg_settings Catalog

Column Value Description Note

default Default value

environment variable Derived from environment variable of the postmaster

configuration file Set in the postgresql.conf file

command line Postmaster process startup parameter

global Global Details

Unknown

database Setting per database

user Setting per user

database user Setting per database and user

client Setting from the client

override Special case to force the use of default values

interactive Boundary for error reporting

test Test for each database or each user

session Changes by SET statement

□ Dynamic change of the parameter file

In PostgreSQL 9.4 or later, settings of the parameter file can be permanence dynamically using

ALTER SYSTEM statement. Only the user with a superuser privilege can execute ALTER SYSTEM

statement.

Syntax 1 ALTER SYSTEM statement

The value of the parameter changed using ALTER SYSTEM statement is written into the

"{PGDATA}/postgresql.auto.conf" file. Please note that this file should not be changed manually.

ALTER SYSTEM SET parameter_name = value | DEFAULT

ALTER SYSTEM RESET parameter_name

43

© 2013-2017 Hewlett-Packard Enterprise.

Example 17 Change the parameter by ALTER SYSTEM statement

As can be seen in the above example, ALTER SYSTEM statement does not change the parameters

of an instance, it rewrites only postgresql.auto.conf file. This file is parsed after the postgresql.conf

file is loaded at the time of instance startup or pg_reload_conf function execution, and the values are

applied.

Either Specifying the DEFAULT as a parameter value of the ALTER SYSTEM statement or

executing the ALTER SYSTEM RESET statement, the specified parameter is removed from the

postgresql.auto.conf file.

Example 18 Reset to default value by ALTER SYSTEM statement

postgres=# SHOW work_mem ;

 work_mem

 4MB

(1 row)

postgres=# ALTER SYSTEM SET work_mem = '8MB' ;

ALTER SYSTEM

postgres=# SHOW work_mem ;

 work_mem

 4MB

(1 row)

postgres=# \q

$ cat data/postgresql.auto.conf

Do not edit this file manually!

It will be overwritten by ALTER SYSTEM command.

work_mem = '8MB'

$

postgres=# ALTER SYSTEM SET work_mem = DEFAULT ;

ALTER SYSTEM

postgres=# \q

$ cat data/postgresql.auto.conf

Do not edit this file manually!

It will be overwritten by ALTER SYSTEM command.

$

44

© 2013-2017 Hewlett-Packard Enterprise.

□ Parameter file and the SET statement syntax

When writing a parameter with multiple values in the parameter file, separate the values with a

comma (,), and enclose the whole in single quote ('). On the other hand, for changing the parameters

of the session using SET statement, do not use a single quotation. The parameters of SET statement

enclosed in single quotes will be recognized as a single value.

Example 19 The difference in the syntax between the file and the SET statement

□ Parameter description format and error

In addition to the PostgreSQL standard parameters, parameters to be used by the Contrib modules

can be written in postgresql.conf file. Usually the format of the parameter name is

'{MODULENAME}.{PARAMETER}'. On the instance startup, parameters that are written in this

format is not checked the validity. Even if the parameters for the Contrib module is described

incorrectly, the instance is started successfully. You can also get the information using the wrong

parameter name in SHOW statement.

For the above reasons, when you set the parameters for Contrib module, you should check the result

after setting.

$ grep temp_tablespaces ${PGDATA}/postgresql.conf

temp_tablespaces = 'pg_default,ts1'

$ psql

postgres=# SET temp_tablespaces='ts2, ts3' ;

ERROR: tablespace "ts2, ts3" does not exist

postgres=# SET temp_tablespaces=ts2, ts3 ;

SET

postgres=#

45

© 2013-2017 Hewlett-Packard Enterprise.

Example 20 Description of the wrong parameter name

For ALTER SYSTEM statement, because the parameter names specified in the parameters of the

Contrib modules are checked, the parameters with the wrong name could not be specified.

□ Confirmation of the parameter file

The contents of the parameter file (postgresql.conf, postgresql.auto.conf) can be confirmed from

pg_file_settings catalog. Every time a search is done in this catalog, the file content is parsed, and we

can refer to the information that has been described in the file.

Example 21 Confirm the file contents from the catalog

$ grep autoexplain postgresql.conf

autoexplain.loganalyze = true -- Correct name is "auto_explain.log_analyze"

$ pg_ctl –D data start –w

waiting for server to start....

LOG: redirecting log output to logging collector process

HINT: Future log output will appear in directory "pg_log".

 done

server started -- Instance startup normally

$ psql

postgres=# SHOW autoexplain.loganalyze ; -- Can check as SHOW statement

 autoexplain.loganalyze

 true

(1 row)

postgres=# ALTER SYSTEM SET port=5434 ;

ALTER SYSTEM

postgres=# SELECT sourcefile, name, setting FROM pg_file_settings

WHERE name = 'port' ;

 sourcefile | name | setting

--+------+---------

 /usr/local/pglsq/data/postgresql.auto.conf | port | 5434

(1 row)

46

© 2013-2017 Hewlett-Packard Enterprise.

2.3.3 Loading the external library
PostgreSQL can be extended its functionality by dynamically loading external shared libraries.

□ Parameters for loading the library

The following parameters are defined in order to load the external library automatically. In each

parameter, a list of the library (comma delimited) is specified.

Table 23 Parameters for loading the library

Parameter name Description

shared_preload_libraries Load at instance startup

session_preload_libraries Load at the postgres process start; only superuser can change

local_preload_libraries Load at the postgres process start; general user can change

On postgres process startup, first the library specified in the session_preload_libraries is loaded,

libraries specified in the local_preload_libraries is loaded.

□ Parameter value of shared_preload_libraries

In the parameter shared_preload_libraries, a shared library name to be used in the modules such as

Contrib module is set. When instance cannot find a shared library at startup, instance startup will result

in an error.

The following example shows the error message occurred when the instance is started with setting

the parameters under an environment where Contrib module pg_stat_statements has not installed.

Example 22 Error message by setting shared_preload_libraries parameter

Libraries specified in shared_preload_libraries parameter are retrieved from the path specified in

parameter dynamic_library_path.

$ pg_ctl -D data start -w

waiting for server to start....

FATAL: could not access file "pg_stat_statements": No such file or directory

.... stopped waiting

pg_ctl: could not start server

Examine the log output.

47

© 2013-2017 Hewlett-Packard Enterprise.

2.3.4 Behavior during instance stopping failure
"Pg_ctl stop -m smart" command waits for the disconnecting of the connection user, but pg_ctl

command finishes in return value 1 when it elapses time-out (default 60 seconds). Even when the time-

out occurs, the instance is still in a status which indicates "during shutdown". Therefore, a new client

connection is not possible. When the existing sessions are all finished, instance shutdown

automatically. The timeout setting is specified in the pg_ctl command parameters --timeout = number

of seconds (or -t number of seconds).

Example 23 Instance termination time-out

2.3.5 Load library of instance startup
Shared libraries that are loaded at instance startup are shown below. The behavior of the instance

startup was confirmed by tracing with the strace command.

$ pg_ctl –D data stop –m smart

waiting for server to shut

down... failed

pg_ctl: server does not shut down

HINT: The "-m fast" option immediately disconnects sessions rather than

waiting for session-initiated disconnection.

$

$ psql -U user1

psql: FATAL: the database system is shutting down

-- The new session can not be accepted

$

$ pg_ctl stop -m immediate

waiting for server to shut down.... done

server stopped

$

48

© 2013-2017 Hewlett-Packard Enterprise.

Table 24 Read library of instance startup

Libraries Directory

libpq.so.5 {INSTALL}/lib

libc.so.6 /lib64

libpthread.so.6 /lib64

libtinfo.so.5 /lib64

libdl.so.2 /lib64

librt.so.1 /lib64

libm.so.6 /lib64

libnss_files.so.2 /lib64

libselinux.so.1 /lib64

libacl.so.1 /lib64

libattr.so.1 /lib64

2.3.6 Major input and output files
Input and output files used on the instance startup are listed here. It is assumed that the instance was

stopped successfully. Default values are specified for the parameters.

49

© 2013-2017 Hewlett-Packard Enterprise.

Table 25 Input and output files

Filenames Directory Note

postgresql.conf {PGDATA}

postgresql.auto.conf {PGDATA}

PG_VERSION {PGDATA}

postmaster.pid {PGDATA}

Japan {INSTALL}/share/postgresql/timezone

posixrules {INSTALL}/share/postgresql/timezone

Default {INSTALL}/share/postgresql/timezonesets

pg_control {PGDATA}/global

.s.PGSQL.5432.lock /tmp

.s.PGSQL.5432 /tmp

0000 {PGDATA}/pg_notify re-create

postmaster.opts {PGDATA} create

pg_log (directory) {PGDATA} create

postgresql-{DATE}.log {PGDATA}/pg_log

pgsql_tmp {PGDATA}/base

state {PGDATA}/pg_replslot/{SLOTNAME} Ver. 9.4-

pg_hba.conf {PGDATA}

pg_ident.conf {PGDATA}

pg_internal.init {PGDATA}/global

recovery.conf {PGDATA}

backup_label {PGDATA}

000000010…00001 {PGDATA}/pg_xlog

0000 {PGDATA}/pg_multixact/offsets

0000 {PGDATA}/pg_clog

pg_filenode.map {PGDATA}/global

global.tmp {PGDATA}/pg_stat_tmp

db_{OID}.stat {PGDATA}/pg_stat

global.stat {PGDATA}/pg_stat_tmp

{PGDATA}/pg_stat

db_0.tmp {PGDATA}/pg_stat_tmp

archive_status {PGDATA}/pg_xlog

50

© 2013-2017 Hewlett-Packard Enterprise.

2.3.7 Behavior at the time of Windows Service stop.
PostgreSQL instance on Microsoft Windows will be able to operate as a Windows Service. Instance

stop processing using the NET STOP command or "Service Manager" is performed in the fast mode

(SIGINT signal). The following sources are part of the pgwin32_ServiceMain function in the

"src/bin/pg_ctl/pg_ctl.c".

Example 24 Instance termination by NET STOP command

static void WINAPI

pgwin32_ServiceMain(DWORD argc, LPTSTR *argv)

{

…

pgwin32_SetServiceStatus(SERVICE_STOP_PENDING);

 switch (ret)

 {

 case WAIT_OBJECT_0: /* shutdown event */

 {

 /*

 * status.dwCheckPoint can be incremented by

 * test_postmaster_connection(), so it might not start from 0.

 */

 int maxShutdownCheckPoint = status.dwCheckPoint + 12;

 kill(postmasterPID, SIGINT);

 …

}

51

© 2013-2017 Hewlett-Packard Enterprise.

3. Storage Architecture

3.1 Structure of the Filesystem
In this section, the information about the file system is described.

3.1.1 Directory Structure
The directory structure of the PostgreSQL database cluster is written here.

□ Database Cluster

In Database cluster, all the persisted information of a PostgreSQL database is stored. It is created by

the initdb command with specifying a directory of the operating system. Database cluster is specified

even in the pg_ctl command used at the time of instance start and stop, becomes the operational unit

of the instance.

Example 25 File structure in the database cluster

$ ls -l ${PGDATA}

total 96

-rw------- 1 postgres postgres 4 Feb 11 12:45 PG_VERSION

drwx------ 6 postgres postgres 4096 Feb 11 13:00 base

drwx------ 2 postgres postgres 4096 Feb 11 15:52 global

drwx------ 2 postgres postgres 4096 Feb 11 12:45 pg_clog

-rw------- 1 postgres postgres 4222 Feb 11 12:45 pg_hba.conf

-rw------- 1 postgres postgres 1636 Feb 11 12:45 pg_ident.conf

drwxr-xr-x 2 postgres postgres 4096 Feb 11 15:52 pg_log

………………………………

drwx------ 2 postgres postgres 4096 Feb 11 15:54 pg_tblspc

drwx------ 2 postgres postgres 4096 Feb 11 12:45 pg_twophase

drwx------ 3 postgres postgres 4096 Feb 11 12:45 pg_xlog

-rw-r--r-- 1 postgres postgres 101 Feb 11 12:45 postgresql.auto.conf

-rw-r--r-- 1 postgres postgres 19598 Feb 11 12:45 postgresql.conf

-rw------- 1 postgres postgres 45 Feb 11 15:52 postmaster.opts

-rw------- 1 postgres postgres 73 Feb 11 15:52 postmaster.pid

$

52

© 2013-2017 Hewlett-Packard Enterprise.

Many directories and files are created in the directory specified as a database cluster. "base" directory

is the standard directory where the persistent data is stored. Sub directories corresponding to the

database are created in "base" directory.

3.1.2 Database directory internals
Under the directory corresponding to the database, objects stored in the database are created as a

separate file. The following files are created automatically.

Table 26 Files that are created under database directory

Filename Description

{999999} Segment file

{999999}.{9} Segment file (exceeding 1 GB)

{999999}_fsm Free Space Map file

{999999}_vm Visibility Map file

{999999}_init4 File indicating the initialization fork of UNLOGGED TABLE

pg_filenode.map The mapping of the OID and the physical file name of the part of the system

catalog.

pg_internal.init Cache file of the system information. It is re-created at instance startup.

It is created under "{PGDATA}/global" directory and the directory where the

database is saved.

PG_VERSION Text file where version information is recorded. It is checked at the time of

database use.

□ Component of the table and System catalog

The table of PostgreSQL is actually a collection of multiple objects. Internally, it is composed of the

following elements.

4 *_init file is created UNLOGGED TABLE, UNLOGGED TABLE of TOAST table, TOAST index of

UNLOGGED TABLE, for an index that has been created for UNLOGGED TABLE.

53

© 2013-2017 Hewlett-Packard Enterprise.

Table 27 Component of the table

Object Description Note

Table Area where the data is stored

Index Area to be created in the table for the rapid search

TOAST Table Area for storing large-scale data Described later

TOAST Index Index to speed up the search of the TOAST table Described later

The pg_class catalog manages all of the above object elements. In the pg_class catalog table name

(relname), and OID of TOAST table or TOAST index (reltoastrelid) are stored. Pg_tables catalog is a

view, which extracts only tables from pg_class catalog. Catalogs, which associate tables and indexes,

are pg_index. Information such as OID (indexrelid) of the table stored in pg_class catalog and OID

(indrelid) of an index are stored in this catalog.

Figure 4 Relationship of Table and System Catalog

□ Relationship between tables and files

Tables, indexes, and file of the operating system correspond to the value of the relfilenode column of

pg_class catalog.

Relationship between the object and the file can be confirmed also with the oid2name utility.

Tablespace to be stored is confirmed by reltablespace column of pg_class catalog. If this column value

is 0, it indicates that the object is used pg_default tablespace.

Table

pg_tables

Table

Index

TOAST Table

TOAST Index

pg_class

Index

TOAST Index

pg_index

54

© 2013-2017 Hewlett-Packard Enterprise.

Example 26 Determination of file

□ Segment file

Segment file is a file in which the actual data of tables and indexes are stored. When the file size

exceeds 1 GB (RELSEG_SIZE × BLCKSZ), multiple files are created. In addition to the original file,

files which has the file name added ". {9} ({9} is a number starting with 1)" at the end are created.

Example 27 Segment file

□ Index file

Similar to the table, index is also created as a separate file. File name of the index is stored in the

relfilenode column of pg_class catalog as well. The catalog witch links the table and index is pg_index.

$ oid2name –d datadb1

From database "datadb1":

 Filenode Table Name

 16437 data1

postgres=> SELECT relname, relfilenode, reltablespace FROM pg_class

 WHERE relname IN ('data2', 'data3') ;

 relname | relfilenode | reltablespace

---------+-------------+---------------

 data2 | 34115 | 0 -- pg_default tablespace

 data3 | 34119 | 32778 -- tbl2 tablespace

postgres=> SELECT oid, relname, relfilenode FROM pg_class WHERE

relname='large1' ;

 oid | relname | relfilenode

-------+---------+-------------

 16468 | large1 | 16495

(1 row)

$ ls -l 16495*

-rw-------. 1 postgres postgres 1073741824 Feb 11 14:06 16495

-rw-------. 1 postgres postgres 96550912 Feb 11 14:06 16495.1

55

© 2013-2017 Hewlett-Packard Enterprise.

Figure 5 Relation between pg_class Catalog and Index

3.1.3 TOAST feature
Usually, PostgreSQL stores the tuple in the page of 8 KB unit. A tuple is not stored across the pages.

Therefore, large-scale tuples cannot be stored in a page. To store a larger tuple, a feature called TOAST

(The Oversized-Attribute Storage Technique) is supplied. TOAST data is created when the compressed

column data exceeds the size, which is determined by TOAST_TUPLE_THRESHOLD (determined

at compile time). It also stores the data into the TOAST table until it is reduced not more than

TOAST_TUPLE_TARGET.

□ TOAST Table

TOAST data are stored in a separate table (another file) with the file specified by the relfilenode

column of pg_class catalog. In the reltoastrelid column of pg_class catalogs, oid of TOAST table is

stored. By searching the file name of the TOAST table (relfilenode) from pg_class catalog, it is

possible to identity the file. In order to speed up the search of the TOAST table, TOAST index is

created with TOAST table. TOAST table does not appear in the pg_tables catalog.

Table 28 relname column of pg_class Catalog

Column Value Description

{TABLENAME} table name created in the CREATE TABLE statement

toast_{OID} TOAST table corresponding to the table (OID is oid of the original table)

toast_{OID}_index TOAST index for the TOAST table

pg_class pg_index

oid relname relfilenode indrelid indexrelid

16528 table1 16531 16528 24659

24659 idx1_table1 16532

56

© 2013-2017 Hewlett-Packard Enterprise.

The following figure shows the relationship between the table and the TOAST table. When you create

a table toast1, TOAST table toast_16525 is automatically created and saved in the file 16532. TOAST

index finds the tuple of indrelid column = 16528 from pg_index catalog.

Figure 6 Relationship between pg_class Catalog and TOAST table

□ Save of TOAST data

The save format can be specified with the TOAST data. Usually save format is determined

automatically, but it can also be specified a column-by-column basis.

Table 29 TOAST data save format

Format Description

PLAIN Do not use TOAST

EXTENDED Compression and TOAST table are used. Default value for the many data type

that can use TOAST.

EXTERNAL It does not compress, but uses TOAST table

MAIN Compression is performed, but TOAST table is not used as a general rule

By executing "\d+ table_name" within psql command, you can confirm the save format of TOAST

corresponding column. Following example shows that c1 column (varchar type) and c2 column

(text type) of toast1 table are TOAST corresponding.

pg_class

oid relname relfilenode reltoastrelid

16525 toast1 16531 16528

16528 toast_16525 16532 0

57

© 2013-2017 Hewlett-Packard Enterprise.

Example 28 Verify TOAST Column

To change the default save format, use SET STORAGE clause in ALTER TABLE statement.

Example 29 Change of TOAST storage format

3.1.4 Relationship between TRUNCATE statement and file
When a transaction, in which TRUNCATE statement is executed, is committed, the table and the

corresponding file are truncated to the size of zero without waiting for the checkpoint. When the

execution of the TRUNCATE statement is completed, a file is newly created to be INSERT next time,

and relfilenode column of pg_class catalog is updated with the new file name. Old files used until

executing of TRUNCATE is removed at the timing of the checkpoint.

postgres=> \d+ toast1

 Table "public.toast1"

 Column | Type | Modifiers | Storage | Stats target | Description

--------+-----------------------+-----------+----------+--------------+------------

 c1 | numeric | | main | |

 c2 | character varying(10) | | extended | |

 c3 | text | | extended | |

Has OIDs: no

postgres=> ALTER TABLE toast1 ALTER c2 SET STORAGE PLAIN ;

ALTER TABLE

postgres=> \d+ toast1

 Table "public.toast1"

 Column | Type | Modifiers | Storage | Stats target | Description

--------+-----------------------+-----------+----------+--------------+-----------

 c1 | numeric | | main | |

 c2 | character varying(10) | | plain | |

 c3 | text | | extended | |

Has OIDs: no

58

© 2013-2017 Hewlett-Packard Enterprise.

Example 30 Relationship between TRUNCATE statement and file

postgres=> SELECT relfilenode FROM pg_class WHERE relname='tr1' ;

relfilenode

 25782

(1 row)

$ ls -l 2578* -- check the file

-rw------- 1 postgres postgres 884736 Feb 11 11:23 25782

-rw------- 1 postgres postgres 24576 Feb 11 11:23 25782_fsm

postgres=> TRUNCATE TABLE tr1 ; -- execute TRUNCATE statement

TRUNCATE TABLE

postgres=> SELECT relfilenode FROM pg_class WHERE relname='tr1' ;

 relfilenode

 25783 -- new file created

(1 row)

$ ls -l 2578*

-rw------- 1 postgres postgres 0 Feb 11 11:25 25782 -- old file

-rw------- 1 postgres postgres 0 Feb 11 11:25 25783 -- new file

$

postgres=# CHECKPOINT ; -- execute CHECKPOINT statement

CHECKPOINT

postgres=# \q

$ ls -l 2578*

-rw------- 1 postgres postgres 0 Feb 11 11:25 25783 -- only new file

$

59

© 2013-2017 Hewlett-Packard Enterprise.

3.1.5 FILLFACTOR attribute
When INSERT statement is executed, the tuple is added to the page. If executor cannot store the tuple

into the working page anymore, it searches the next free page. FILLFACTOR is an attribute to indicate

the percentage of the size in the page where tuples can be stored. The default value for FILLFACTOR

is 100 (%). For this reason, tuples are normally stored in the page without gaps. FILLFACTOR can be

also specified to the index.

The advantage of the decrease of FILL FACTOR from 100% is the performance improvement of the

access in page unit, because free spaces are used in case of update using UPDATE statement. On the

other hand, since the number of the pages used by the table to expand, I/O increases in case of reading

entire table. For the table or index on which update is frequently performed is recommended to lower

the value of the FILLFACTOR from the default value.

□ FILLFACTOR verification at the time of CREATE TABLE statement is executed

To set the FILLFACTOR when creating tables, it should be written to the WITH clause of the

CREATE TABLE statement. To verify, refer the reloptions column of pg_class catalog.

Example 31 Setting of FILLFACTOR attribute

□ Behavior during ALTER TABLE statement execution

To change the FILLFACTOR attribute for an existing table, specify it using SET clause in the ALTER

TABLE statement. Even if FILLFACTOR attribute is changed, the tuples in the existing table are not

changed.

postgres=> CREATE TABLE fill1(key1 NUMERIC, val1 TEXT) WITH (FILLFACTOR = 85) ;

CREATE TABLE

postgres=> SELECT relname,reloptions FROM pg_class WHERE relname='fill1' ;

 relname | reloptions

---------+-----------------

 fill1 | {fillfactor=85}

(1 row)

60

© 2013-2017 Hewlett-Packard Enterprise.

Example 32 Impact on existing data due to the setting of the FILLFACTOR attribute.

This example stores data in the table fill1. When checking the status of the page using

heap_page_items5 function, it can be seen that 157 tuples are stored in the first page. This example

executes ALTER TABLE statement to change the FILLFACTOR attributes, then it confirms the

information on the page again, and it can be seen that the same number of tuples are stored.

5 This function is defined by Contrib modules pageinspect. Requires superuser privileges.

postgres=> INSERT INTO fill1 VALUES (generate_series(1, 1000), 'data') ;

INSERT 0 1000

postgres=> SELECT MAX(lp) FROM heap_page_items(get_raw_page('fill1', 0)) ;

max

 157

(1 row)

postgres=> ALTER TABLE fill1 SET (FILLFACTOR = 30) ;

ALTER TABLE

postgres=> SELECT MAX(lp) FROM heap_page_items(get_raw_page('fill1', 0)) ;

max

 157

(1 row)

61

© 2013-2017 Hewlett-Packard Enterprise.

3.2 Tablespace

3.2.1 What is tablespace?
In PostgreSQL database, persistent objects such as DATABASE, TABLE, INDEX, and

MATERIALIZED VIEW are stored in a tablespace. When database cluster is created, two

tablespaces are created by default. Pg_default tablespace is used by the general user. Pg_global

tablespace contains the system catalog to be shared by all database. If tablespace (TABLESPACE

clause) is not specified on creating the database, pg_default tablespace is used.

□ Parameter default_tablespace

With the parameter default_tablespace, tablespace name is specified, which is used on objects such

as TABLE, INDEX, MATERIALIZED VIEW without TABLESPACE clause. This setting of the

parameter does not affect the destination of the database using CREATE DATABASE statement. The

default value for this parameter is '' (the empty string). To save the object, a tablespace where the

database has been saved is used. This parameter can be changed not only as entire instance, but also

per session.

Table 30 Object destination in case where is not specified tablespace

Object Parameter default_tablespace value

Value is specified No Value (empty string)

DATABASE pg_default pg_default

TABLE Specified tablespace Same tablespace as the database

INDEX Specified tablespace Same tablespace as the database

MATERIALIZED VIEW Specified tablespace Same tablespace as the database

SEQUENCE6 Specified tablespace Same tablespace as the database

If specified parameter default_tablespace per session using SET statement, it checks whether the

table space with the specified name exists, but it does not actually check whether there is an object

creation privilege. If specified with per-instance basis using the postgresql.conf file, the presence of

the specified tablespace is not checked. In that case, tablespace at the destination database is used if

TABLESPACE clause is omitted.

6 Though there is no TABLESPACE clause in the CREATE SEQUENCE statement syntax, it will be

affected by default_tablespace parameter.

62

© 2013-2017 Hewlett-Packard Enterprise.

Example 33 Behavior when non-existent tablespace is specified

□ Parameter temp_tablespaces

It specifies a list of tablespace names to create a temporary object. If more than one name is

specified, the tablespace used will be chosen randomly.

3.2.2 Relationship between the database object and the file
In PostgreSQL, objects such as databases and tables are correspond to the directories and files of the

operating system.

□ Specific tablespace

Pg_default tablespace corresponds to the "base" directory in the database cluster. With an external

tablespace is created a symbolic link is created in the {PGDATA}/pg_tblspc directory. File name of

postgres=> SHOW default_tablespace ;

 default_tablespace

 ts_bad -- Specifies the table space name that does not exist

in the postgresql.conf

(1 row)

postgres=> CREATE TABLE data1 (c1 NUMERIC, c2 VARCHAR(10)) ;

CREATE TABLE

postgres=> \d data1

 Table "public.data1"

 Column | Type | Modifiers

--------+-----------------------+-----------

 c1 | numeric |

 c2 | character varying(10) |

 -- default table space name is used

postgres=> SET default_tablespace = ts_bad2 ;

SET default_tablespace = ts_bad2 ;

ERROR: invalid value for parameter "default_tablespace": "ts_bad2"

DETAIL: Tablespace "ts_bad2" does not exist.

-- When the parameters default_tablespace is changed by the SET

statement, check is performed.

63

© 2013-2017 Hewlett-Packard Enterprise.

the symbolic link corresponds to the oid column of pg_tablespace catalog.

Figure 7 Directory structure and tablespace

Example 34 Correspondence of tablespace

When a tablespace is created, sub-directory named "PG_{VERSION}_{YYYYMMDDN}" is

created in the directory. "YYYYMMDD" part is not tablespace creation date, but it seems to be the

date for the format.

postgres=# CREATE TABLESPACE tbl2 LOCATION '/usr/local/pgsql/tbl2' ;

CREATE TABLESPACE

postgres=# SELECT oid, spcname FROM pg_tablespace ;

 oid | spcname

-------+------------

 1663 | pg_default

 1664 | pg_global

 32788 | tbl2

(3 rows)

$ ls –l /usr/local/pgsql/data/pg_tblspace

total 0

lrwxrwxrwx 1 postgres postgres 26 Feb 11 11:15 32788 ->

/usr/local/pgsql/tbl2

$

Database Cluster

/usr/local/pgsql/data

External Tablespace

/usr/local/pgsql/tbl2

Tablespace oid

Table filenode Table filenode

base

Database oid

pg_tblspc PG_9.6_201608131

Database oid

64

© 2013-2017 Hewlett-Packard Enterprise.

Example 35 The inside of the tablespace directory

□ Specific database

The database is granted an oid unique to the entire database cluster. This oid can be seen as oid pseudo

column of pg_database catalog (or datid column of pg_stat_database catalog). Within the table space,

directory with the same name as the oid of the database is created. You can also confirm the oid using

utility oid2name.

$ ls –l /usr/local/pgsql/tbl2

total 4

drwx------ 2 postgres postgres 6 Feb 11 13:23 PG_9.6_201608131

$

65

© 2013-2017 Hewlett-Packard Enterprise.

Example 36 Identify database

□ Identify the file from the object name

In addition to searching for pg_class catalog, it is possible to identify the file name from the table

name using pg_relation_filepath function. If specified the name of the TABLE, MATERIALIZED

VIEW, and INDEX name to this function, it returns the relative path from the database cluster. If it

uses a tablespace other than pg_default, it is displayed as stored below pg_tblspc directory, but it is

actually a symbolic link destination file.

postgres=> SELECT oid, datname FROM pg_database ;

 oid | datname

-------+-----------

 13322 | postgres

 24577 | demodb

 1 | template1

 13321 | template0

(4 rows)

$ oid2name

All databases:

 Oid Database Name Tablespace

 24577 demodb pg_default

 13322 postgres pg_default

 13321 template0 pg_default

1 template1 pg_default

2

$ ls -l base

total 48

drwx------ 2 postgres postgres 8192 Feb 11 10:33 1

drwx------ 2 postgres postgres 8192 Feb 11 10:33 13321

drwx------ 2 postgres postgres 8192 Feb 11 12:25 13322

drwx------ 2 postgres postgres 8192 Feb 11 12:25 24577

$

66

© 2013-2017 Hewlett-Packard Enterprise.

Example 37 Identify file from the object name

To retrieve only the file name, use the pg_relation_filenode function.

postgres=> CREATE TABLE data1(c1 NUMERIC, c2 CHAR(10)) ;

CREATE TABLE

postgres=> SELECT pg_relation_filepath('public.data1') ;

 pg_relation_filepath

 base/16394/16447

(1 row)

postgres=> CREATE TABLE data2 (c1 NUMERIC, c2 CHAR(10)) TABLESPACE ts1 ;

CREATE TABLE

postgres=> SELECT pg_relation_filepath('public.data2') ;

 pg_relation_filepath

--

pg_tblspc/32985/PG_9.6_201608131/16385/32986

(1 row)

67

© 2013-2017 Hewlett-Packard Enterprise.

3.3 File system and behavior

3.3.1 Protection mode of the database cluster
The directory specified in the database cluster should be the mode 0700 to which only the

administrator user can access. If the permissions are set for the group or external users, it is impossible

to start the instance.

Example 38 Protection mode and instance startup

When initdb command is executed on the empty directory and the database cluster is created, the

protection mode of the directory will be changed automatically. The protection mode of the directory

where tablespace has been created will also be changed in the same way.

$ chmod g+r data

$ pg_ctl -D data start -w

server starting

FATAL: data directory "/usr/local/pgsql/data" has group or world access

DETAIL: Permissions should be u=rwx (0700).

$ echo $?

1

68

© 2013-2017 Hewlett-Packard Enterprise.

Example 39 Changes in protection mode

The check on the protection mode of instance startup is not executed in a tablespace that has been

created outside the database cluster. For this reason, modification of the protection mode does not

result in an error.

$ mkdir data1

$ ls –ld data1

drwxrwxr-x 2 postgres postgres Feb 11 12:59 10:27 data1

$ initdb data1

The files belonging to this database system will be owned by user "postgres".

……………

 pg_ctl -D data1 -l logfile start

$ ls –ld data1

drwx------ 14 postgres postgres 4096 Feb 11 12:59 data1

$

$ mkdir ts1

$ ls –ld ts1

drwxr-xr-x. 2 postgres postgres 4096 Feb 11 12:59 ts1

$ psql

postgres=# CREATE TABLESPACE ts1 LOCATION '/usr/local/pgsql/ts1' ;

CREATE TABLESPACE

postgres=# \q

$ ls –ld ts1

drwx------. 3 postgres postgres 4096 Feb 11 12:59 ts1

69

© 2013-2017 Hewlett-Packard Enterprise.

Example 40 Change of protection mode for tablespace directory

3.3.2 Update File
In PostgreSQL, database objects for example TABLE, INDEX, and MATERIALIZED VIEW are

created as separate files. Following is the I/O status for the file.

□ Immediately after table creation

When a table is created, the corresponding file is created. The mapping of the tables and files can be

found in relfilenode column of oid2name command or pg_class catalog.

Example 41 Table creation and file

postgres=# CREATE TABLESPACE ts1 LOCATION '/usr/local/pgsql/ts1' ;

CREATE TABLESPACE

postgres=# \q

$ ls –ld ts1

drwx------. 3 postgres postgres 4096 Feb 11 12:59 ts1

$ chmod a+r ts1

$ ls –ld ts1

drwxr--r--. 3 postgres postgres 4096 Feb 11 12:59 ts1

$ pg_ctl -D data restart -m fast

waiting for server to shut down.... done

server stopped

server starting

postgres=> CREATE TABLE data1(c1 VARCHAR(10), c2 VARCHAR(10)) ;

CREATE TABLE

postgres=> SELECT relfilenode FROM pg_class WHERE relname='data1' ;

relfilenode

 16446

(1 row)

$ cd data/base/16424/

$ ls –l 16446

-rw------- 1 postgres postgres 0 Feb 11 16:48 16446

70

© 2013-2017 Hewlett-Packard Enterprise.

At the time of table creation, it is an empty file of size 0. A tuple will be stored in this table. This

behavior is also applied if the table is truncated with TRUNCATE statement.

Example 42 File before the checkpoint

Since the checkpoint has not occurred, the size will not be expanded. When a forced checkpoint is

performed, data is written to the file (write by writer process might be performed).

Example 43 File after the checkpoint

The file is written in 8 KB unit block size.

□ Store and update the data

As PostgreSQL is a RDBMS of write-once, when it updates the tuple, old tuple is not changed and

the tuple after the change will be added to the page.

postgres=> INSERT INTO data1 VALUES('ABC', '123') ;

INSERT 01

postgres=> \q

$ ls –l 16446

-rw------- 1 postgres postgres 0 Feb 11 16:53 16446

postgres=# CHECKPOINT ;

CHECKPOINT

postgres=# \q

$ ls –l 16446

-rw------- 1 postgres postgres 8192 Feb 11 16:54 16446

71

© 2013-2017 Hewlett-Packard Enterprise.

Example 44 Execution of UPDATE statement and condition of the file

From the command execution example, it is found that header is written and the first tuple is stored

at the end of the block. It is found also that the updated tuple is added. From this verification, we can

see that updating of tuples in the one block.

□ Multiple update

If the tuple is updated several times, the block becomes full. If there is reusable space in the same

block, unnecessary space in the block is deleted, and the same page is used as far as possible (Heap

Only Tuples / HOT feature).

3.3.3 Visibility Map and Free Space Map
 Tables and indexes are managed as a single file (or multiple files depending on the size). Visibility

Map and Free Space Map are the files created with each object except for the files to store the data.

Visibility Map and Free Space Map file are created only for TABLE, UNLOGGED TABLE and

MATERIALIZED VIEW. On other persistent object (TOAST table, TOAST index, index, sequence

etc.), they are not created.

postgres=> UPDATE data1 SET c1='DEF', c2='456' ;

UPDATE 1

postgres=# CHECKPOINT ;

CHECKPOINT

$ od –a 16446

0000000 nul nul nul nul P bs stx dc2 soh nul nul nul sp nul @ us

0000020 nul sp eot sp ff dc4 etx nul ` us @ nul @ us @ nul

0000040 nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul

*

0017700 ff dc4 etx nul nul nul nul nul nul nul nul nul nul nul nul nul

0017720 stx nul stx nul stx (can nul ht D E F ht 4 5 6

0017740 vt dc4 etx nul ff dc4 etx nul nul nul nul nul nul nul nul nul

0017760 stx nul stx @ stx soh can nul ht A B C ht 1 2 3

0020000

72

© 2013-2017 Hewlett-Packard Enterprise.

□ Visibility Map

Visibility Map is a file that records the page where garbage tuple exists. It manages each page

included in the table of the file as two bits. The name of the Visibility Map file is "{RELFILENODE}

_vm". By referring to this file, PostgreSQL skips the pages, which have no garbage tuple on execution

of VACUUM, and as a result, it can reduce the I/O load of VACUUM process. The initial size is 8 KB.

After table creation, it is created at the first checkpoint or VACUUM time. In fact, the data, it is skipped

only if the page does not exist unnecessary tuples (Visible) is continuous 32 or more. This value is

fixed at SKIP_PAGES_THRESHOLD macro to the source code

(src/backend/commands/vacuumlazy.c).

In order to view the contents of the Visibility Map, you can use the pg_visibility of Contrib module

(from PostgreSQL 9.6).

Example 45 Reference Visibility Map

□ Free Space Map

Free Space Map (FSM) is a file to manage the volume of the free space in each page of the table

file. It manages each page included in the file of the table at a single byte. The name of the FSM file

is "{RELFILENODE}_fsm". By referring to this file, it will be able to find the storage location of a

tuple at a high speed. The initial size of this file is 24 KB. After table creation, it is created at the

time of the first VACUUM execution. In addition, it will be updated every VACUUM execution.

VACUUM performs processing while referring to the Visibility Map, and updates the Free Space

Map.

postgres=# CREATE EXTENSION pg_visibility ;

CREATE EXTENSION

postgres=# SELECT pg_visibility_map('data1') ;

 pg_visibility_map

 (0,t,f)

 (1,t,f)

 (2,t,f)

 (3,t,f)

<<以下省略>>

73

© 2013-2017 Hewlett-Packard Enterprise.

Figure 8 Visibility Map and Free Space Map

Example 46 Visibility Map and Free Space Map

3.3.4 VACUUM behavior
 Here we make sure how the contents of the file changes by VACUUM process. Confirmation of the

operation is done with disabling automatic VACUUM (parameter autovacuum to "off").

□ VACUUM CONCURRENT

VACUUM CONCURRENT process marks the pre-update information to reusable state. It is verified

Table Visibility Map Free Space Map

 Dead Tuple

 Valid Tuple

page-

pa

ge-

0% page 1

page 2

page 3

50%

25%

postgres=> SELECT relname, relfilenode FROM pg_class

 WHERE relname='data1' ;

relname | relfilenode

---------+-------------

 data1 | 16409

(1 row)

$ cd data/base/16385

$ ls 16409*

-rw------- 1 postgres postgres 8192 Feb 11 16:46 16409 -- Table Segment

-rw------- 1 postgres postgres 24576 Feb 11 16:46 16409_fsm -- Free Space Map

-rw------- 1 postgres postgres 8192 Feb 11 16:46 16409_vm -- Visibility Map

$

74

© 2013-2017 Hewlett-Packard Enterprise.

how the information block changes before and after the process.

Example 47 Insert data (12 tuples)

Create a table with 1KB tuple size, and stores the 12 tuples in it. As a result, two blocks table is

created.

Example 48 Prepare data (Identify file)

postgres=> CREATE TABLE data1 (c1 CHAR(500) NOT NULL, c2 CHAR(500) NOT NULL) ;

CREATE TABLE

postgres=> INSERT INTO data1 VALUES ('AAA', '111') ;

postgres=> INSERT INTO data1 VALUES ('BBB', '222') ;

postgres=> INSERT INTO data1 VALUES ('CCC', '333') ;

postgres=> INSERT INTO data1 VALUES ('DDD', '444') ;

postgres=> INSERT INTO data1 VALUES ('EEE', '555') ;

postgres=> INSERT INTO data1 VALUES ('FFF', '666') ;

postgres=> INSERT INTO data1 VALUES ('GGG', '777') ;

postgres=> INSERT INTO data1 VALUES ('HHH', '888') ;

postgres=> INSERT INTO data1 VALUES ('III', '999') ;

postgres=> INSERT INTO data1 VALUES ('JJJ', '000') ;

postgres=> INSERT INTO data1 VALUES ('AAA', 'aaa') ;

postgres=> INSERT INTO data1 VALUES ('AAA', 'bbb') ;

INSERT 0 1

postgres=# CHECKPOINT ;

CHECKPOINT

$ oid2name –d datadb1

From database "datadb1":

 Filenode Table Name

 16470 data1

$ cd /usr/local/pgsql/data/base/16424

$ ls –l 16470

-rw------- 1 postgres postgres 16384 Feb 11 10:56 16470

75

© 2013-2017 Hewlett-Packard Enterprise.

Example 49 Initial state (First block)

0000000 nul nul nul nul dle U stx nak soh nul nul nul 4 nul H etx

* …

0001740 ` bel nul nul G G G sp sp sp sp sp sp sp sp sp

* …

0002720 sp sp sp sp sp sp sp sp ` bel nul nul 7 7 7 sp

* …

0003740 ack nul stx nul stx bs can nul ` bel nul nul F F F sp

* …

0004740 ` bel nul nul 6 6 6 sp sp sp sp sp sp sp sp sp

* …

0005760 ` bel nul nul E E E sp sp sp sp sp sp sp sp sp

* …

0006740 sp sp sp sp sp sp sp sp ` bel nul nul 5 5 5 sp

* …

0007760 eot nul stx nul stx bs can nul ` bel nul nul D D D sp

* …

0010760 ` bel nul nul 4 4 4 sp sp sp sp sp sp sp sp sp

* …

0012000 ` bel nul nul C C C sp sp sp sp sp sp sp sp sp

* …

0012760 sp sp sp sp sp sp sp sp ` bel nul nul 3 3 3 sp

* …

0014000 stx nul stx nul stx bs can nul ` bel nul nul B B B sp

* …

0015000 ` bel nul nul 2 2 2 sp sp sp sp sp sp sp sp sp

* …

0016020 ` bel nul nul A A A sp sp sp sp sp sp sp sp sp

* …

0017000 sp sp sp sp sp sp sp sp ` bel nul nul 1 1 1 sp

*

76

© 2013-2017 Hewlett-Packard Enterprise.

Example 50 Initial state (2nd block)

Delete the middle tuple of each block, and then run the VACUUM process.

0020000 nul nul nul nul nul k stx nak soh nul nul nul , nul X vt

0020020 nul sp eot sp nul nul nul nul x esc dle bs p etb dle bs

0020040 h dc3 dle bs ` si dle bs X vt dle bs nul nul nul nul

0020060 nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul nul

*

0025720 nul nul nul nul nul nul nul nul 6 dc4 etx nul nul nul nul nul

* …

0025760 ` bel nul nul L L L sp sp sp sp sp sp sp sp sp

* …

0026740 sp sp sp sp sp sp sp sp ` bel nul nul b b b sp

* …

0027760 eot nul stx nul stx bs can nul ` bel nul nul K K K sp

* …

0030760 ` bel nul nul a a a sp sp sp sp sp sp sp sp sp

* …

0032000 ` bel nul nul J J J sp sp sp sp sp sp sp sp sp

* …

0032760 sp sp sp sp sp sp sp sp ` bel nul nul 0 0 0 sp

* …

0034000 stx nul stx nul stx bs can nul ` bel nul nul I I I sp

* …

0035000 ` bel nul nul 9 9 9 sp sp sp sp sp sp sp sp sp

* …

0036020 ` bel nul nul H H H sp sp sp sp sp sp sp sp sp

* …

0037000 sp sp sp sp sp sp sp sp ` bel nul nul 8 8 8 sp

0037020 sp sp sp sp sp sp sp sp sp sp sp sp sp sp sp sp

*

0040000

77

© 2013-2017 Hewlett-Packard Enterprise.

Example 51 Delete tuples and execute VACUUM

By this operation, we can see how the block contents are changed. The following two cases show the

block state after VACUUM. In the block, valid tuple is moved to the bottom of the block, and free

space is created between the header and the bottom of the block. By this operation, it is verified that a

contiguous free space is created. However, part of the tuple (001740 C1 = 'GGG', the tuple of C2 =

'777', 003740 C1 = 'LLL', C2 = tuple of 'bbb' in the following example) is stored in duplicate.

Notice

postgres=> DELETE FROM data1 WHERE c1 IN ('CCC', 'JJJ') ;

DELETE 2

postgres=# CHECKPOINT ;

CHECKPOINT

postgres=> VACUUM data1 ;

VACUUM

Tuple organization in the block has been implemented in a function of

HOT (Heap On Tuples). If there is no sufficient free space in the page,

a work correspoud to VACUUM is executed in the block. This behavior is

described in the following pages (in Japanese).

http://lets.postgresql.jp/documents/tutorial/hot_2/hot2_2

http://lets.postgresql.jp/documents/tutorial/hot_2/hot2_2

78

© 2013-2017 Hewlett-Packard Enterprise.

Example 52 After VACUUM operation (First block)

0000000 nul nul nul nul sp 7 stx nak soh nul soh nul 4 nul P bel

*…

0001740 ` bel nul nul G G G sp sp sp sp sp sp sp sp sp

*…

0002720 sp sp sp sp sp sp sp sp ` bel nul nul 7 7 7 sp

*…

0003740 bel nul stx nul stx ht can nul ` bel nul nul G G G sp

*…

0004740 ` bel nul nul 7 7 7 sp sp sp sp sp sp sp sp sp

*…

0005760 ` bel nul nul F F F sp sp sp sp sp sp sp sp sp

*…

0006740 sp sp sp sp sp sp sp sp ` bel nul nul 6 6 6 sp

*…

0007760 enq nul stx nul stx ht can nul ` bel nul nul E E E sp

*…

0010760 ` bel nul nul 5 5 5 sp sp sp sp sp sp sp sp sp

*…

0012000 ` bel nul nul D D D sp sp sp sp sp sp sp sp sp

*…

0012760 sp sp sp sp sp sp sp sp ` bel nul nul 4 4 4 sp

*…

0014000 stx nul stx nul stx ht can nul ` bel nul nul B B B sp

*…

0015000 ` bel nul nul 2 2 2 sp sp sp sp sp sp sp sp sp

*…

0016020 ` bel nul nul A A A sp sp sp sp sp sp sp sp sp

*…

0017000 sp sp sp sp sp sp sp sp ` bel nul nul 1 1 1 sp

*

79

© 2013-2017 Hewlett-Packard Enterprise.

Example 53 After VACUUM operation (2nd block)

□ Space usage after VACUUM

As free space is created by VACUUM process, PostgreSQL stores the new data.

Example 54 Insert New Data

0020000 nul nul nul nul dle H stx nak soh nul soh nul , nul ` si

*…

0025760 ` bel nul nul L L L sp sp sp sp sp sp sp sp sp

*…

0026740 sp sp sp sp sp sp sp sp ` bel nul nul b b b sp

*…

0027760 enq nul stx nul stx ht can nul ` bel nul nul L L L sp

*…

0030760 ` bel nul nul b b b sp sp sp sp sp sp sp sp sp

*…

0032000 ` bel nul nul K K K sp sp sp sp sp sp sp sp sp

*…

0032760 sp sp sp sp sp sp sp sp ` bel nul nul a a a sp

*…

0034000 stx nul stx nul stx ht can nul ` bel nul nul I I I sp

*…

0035000 ` bel nul nul 9 9 9 sp sp sp sp sp sp sp sp sp

*…

0036020 ` bel nul nul H H H sp sp sp sp sp sp sp sp sp

*…

0037000 sp sp sp sp sp sp sp sp ` bel nul nul 8 8 8 sp

*

0040000

postgres=> INSERT INTO data1 VALUES ('MMM', 'ccc') ;

INSERT 0 1

postgres=# CHECKPOINT ;

CHECKPOINT

80

© 2013-2017 Hewlett-Packard Enterprise.

Example 55 After INSERT (First block)

As described above, it is found that 0,001,740 part, that has been stored redundantly, was overwritten.

This behavior might be different by FILLFACTOR attributes of the table.

□ VACUUM FULL

VACUUM FULL performs, not only the re-usage of the updated tuple, but also reduction of the file.

Here, we can see how the actual file changes.

When VACUUM FULL statement is executed, the i-node of the file and the file name are changed;

this means that the new file is created. By this behavior, it is shown that VACUUM FULL reduces the

file by reading the existing file and creating a new file with organizing tuples.

Example 56 VACUUM operation (Execute VACUUM FULL)

$ ls -li 16470 -- File befre VACUUM FULL

558969 -rw------- 1 postgres postgres 16384 Feb 11 11:39 16470

$ oid2name -d datadb1

From database "datadb1":

 Filenode Table Name

 16476 data1 -- Chenged Filenode due to VACUUM FULL

$ ls -li 16476 -- Changed file name and i-node

558974 -rw------- 1 postgres postgres 16384 Feb 11 11:47 16476

0000000 nul nul nul nul ` t stx nak soh nul soh nul 4 nul H etx

* …

0001740 ` bel nul nul M M M sp sp sp sp sp sp sp sp sp

* …

0002720 sp sp sp sp sp sp sp sp ` bel nul nul c c c sp

* …

0003740 bel nul stx nul stx ht can nul ` bel nul nul G G G sp

* …

0004740 ` bel nul nul 7 7 7 sp sp sp sp sp sp sp sp sp

* …

81

© 2013-2017 Hewlett-Packard Enterprise.

When executing VACUUM FULL on the database that contains multiple tables, the VACUUM

process executed at the same time is only one table (CONCURRENT VACUUM as well). When

VACUUM FULL is executed to the table consists of multiple segments, all of the files that compose

the table are maintained until the completion of the VACUUM FULL to all files. Therefore, in case

of the large-scale table (consists of many segments), there is a possibility that the storage capacity of

the table becomes twice at the maximum.

□ Bulk update and partial update

Considering the table contains 1,000 tuples, the number of the unnecessary tuples processed by

VACUUM is different according to the way of UPDATE execution: execute UPDATE statement to

all 1,000 tuples collectively, or execute UPDATE 1,000 times to each tuple. The reason is that the

copies of all the tuples are created in case of bulk update, whereas the unnecessary tuples in the

block are re-used before executing VACUUM in case of single tuple update.

82

© 2013-2017 Hewlett-Packard Enterprise.

Example 57 The difference in the number of blocks by the update method

postgres=> CREATE TABLE data1(c1 NUMERIC, c2 VARCHAR(100), c3 VARCHAR(100)) ;

CREATE TABLE

-- insert 1000 tuples

postgres=> SELECT relpages, reltuples FROM pg_class WHERE relname='data1' ;

 relpages | reltuples

----------+-----------

 8 | 1000

(1 row)

postgres=> UPDATE data1 SET c1=c1+1 ; -- Bulk Update

UPDATE 1000

postgres=> SELECT relpages, reltuples FROM pg_class where relname='data1' ;

 relpages | reltuples

----------+-----------

 15 | 1000 -- Increase blocks

(1 row)

postgres=> TRUNCATE TABLE data1 ;

-- insert 1000 tuples

postgres=> UPDATE data1 SET C2='TEST' WHERE c1=100 ; -- 1,000 times Update

UPDATE 1

postgres=> SELECT relpages, reltuples FROM pg_class WHERE relname='data1' ;

 relpages | reltuples

----------+-----------

 8 | 1000 -- Remain block number

(1 row)

83

© 2013-2017 Hewlett-Packard Enterprise.

3.3.5 Opened Files
The file, which is opened by PostgreSQL in the instance, is investigated. Using lsof command of the

Linux is the relation between a process and the open file is checked.

□ Immediately after the instance start

Immediately after instance startup, logger process opens a log file, and autovacuum launcher process

opens files, which correspond to pg_database catalog.

Table 31 Opened Files

Process Object / File

postmaster /tmp/.s.PGSQL.{PORT}

logger process7 {PGDATA}/pg_log/postgresql-{DATE}.log

autovacuum launcher pg_database

□ Just after user connection

When a client connects, the backend process (postgres) opens pg_am catalog. It is unclear whether

the user's connection leads to, but a checkpointer process opens a current WAL file.

7 When the parameters logging_collector se to 'on'

84

© 2013-2017 Hewlett-Packard Enterprise.

Table 32 Additional open files

Process Object / File

postgres pg_authid

postgres pg_class

postgres pg_attribute

postgres pg_index

postgres pg_am

postgres pg_opclass

postgres pg_amproc

postgres pg_opclass_oid_index

postgres pg_amproc_fam_proc_index

postgres pg_class_oid_index

postgres pg_attribute_relid_attnum_index

postgres pg_index_indexrelid_index

postgres pg_database_oid_index

postgres pg_db_role_setting_databaseid_rol_index

□ Just after the update transaction

When the update transaction occurs, the backend process opens not only objects to be updated, but

also the current of WAL.

Table 33 Additional open files

Process Object / File

postgres pg_xlog/{WALFILE}

postgres Updated object file

□ Just after the user disconnect

When the user disconnects, because of the backend process stop, the opened file returns to original.

Table 34 Opened files

Process Object / File

autovacuum launcher pg_database

logger process {PGDATA}/pg_log/postgresql-{DATE}.log

85

© 2013-2017 Hewlett-Packard Enterprise.

An above-mentioned experiment shows that PostgreSQL closes many files in the time when they

become unnecessary. A log file and a WAL file are also opened at the time when it is necessary, and

closed when it becomes unnecessary.

3.3.6 Behavior of process (Writing WAL data)
When a transaction commits, renewal information is written to a WAL file. WAL information is wrote

by wal writer process or a postgres process. In some typical documents, it is said that only wal writer

process writes WAL, but actually, postgres process also WAL. The selection method of the process

which writes WAL, etc., validated adequately.

□ In case of parameter synchronous_commit set to "on"

The following example, outputs the system call of postgres process when it issues the INSERT

statement after creating a table for instance with parameter synchronous_commit set to "on" (default

value). The postgres process writes of WAL.

Example 58 System call postgres process to be executed

 1: recvfrom(10, "Q\0\0\0,INSERT INTO data1 values (1"..., 8192, 0, NULL, NULL) = 45

 2: open("base/16394/91338_fsm", O_RDWR) = -1

 3: open("base/16394/91338", O_RDWR) = 16

 4: lseek(16, 0, SEEK_END) = 0

 5: lseek(16, 0, SEEK_END) = 0

 6: kill(7487, SIGUSR1) = 0

 7: write(16, "\0"..., 8192) = 8192

 8: open("pg_xlog/000000010000000D000000DA", O_RDWR) = 17

 9: lseek(17, 6381568, SEEK_SET) = 6381568

10: write(17, "u\320\5\0\1\0\0\0\0`a\332\r\0\0005\4\0\0\0\0\0\0"..., 8192) = 8192

11: fdatasync(17) = 0

12: sendto(9, "\2\0\0\0\230\2\0\0\n@\0\0\6\0\0\0\0\0\0\0"..., 664, 0, NULL, 0) = 664

13: sendto(10, "C\0\0\0\17INSERT 0 1\0Z\0\0\0\5I", 22, 0, NULL, 0) = 22

86

© 2013-2017 Hewlett-Packard Enterprise.

Table 35 Executed System call

Line# Operation

1 Receive INSERT statement from remote host

2 Access file for table (check fsm file)

3 Access file for table (open data file)

4 Scan file for table

5 Scan file for table

6 Send signal to process #7487 (writer process)

7 Initialize file for table (initialize page)

8 Open WAL file

9 Seek WAL file

10 Write WAL file

11 Sync WAL file

12 Send result to UDP network

13 Send result to TCP session

□ In case of parameter synchronous_commit set to "off"

When parameter synchronous_commit was set to "off", wal writer process started to write WAL. A

postgres process does not access to WAL file. After reading a data file, postgres process sends

SIGUSR1 signal to wal writer process (process ID 7635).

87

© 2013-2017 Hewlett-Packard Enterprise.

Example 59 Major system calls by postgres process executed

Example 60 Major system calls by wal writer process executed

Wal writer process receives a SIGUSR1 signal, performs processing of the pipe, and writs to the

WAL files.

□ Large-scale update transaction

When renewal data cannot be stored in a WAL buffer, the WAL file is updated before transaction is

fixed. In this case, postgres process and wal writer process both update WAL file with

communicating each other.

recvfrom(10, "Q\0\0\0.insert into data1 values (1"..., 8192, 0, NULL, NULL) = 47

open("base/16499/16519_fsm", O_RDWR) = 34

lseek(34, 0, SEEK_END) = 40960

lseek(34, 0, SEEK_SET) = 0

read(34, "\0\0\001!\312\0\0\0\0\30\0\0 \0 \4 \0\0\0\\0\350\350\0\350"..., 8192) =

8192

open("base/16499/16519", O_RDWR) = 35

lseek(35, 44269568, SEEK_SET) = 44269568

read(35, "\1\0\0\0\260774\2P\f\0 \4 \0\0\0\0\330\237D\0\260\237D\0"..., 8192) = 8192

kill(7635, SIGUSR1) = 0

sendto(9, "\2\0\0\0\320\3\0\0s@\0\0\t\\0\0\0\0\0\0\0\0\0\0"..., 976, 0, NULL, 0) =

976

sendto(9, "\2\0\0\0\320\3\0\0s@\\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 976, 0, NULL, 0) =

976

sendto(9, "\2\0\0\0000\2\0\0s@\0\0\5\0\0\0\0\0\0\0\0\0\0\0"..., 560, 0, NULL, 0) =

560

sendto(10, "C\0\0\0\17INSERT 0 1\0Z\0\0\0\5I", 22, 0, NULL, 0) = 22

--- SIGUSR1 (User defined signal 1) @ 0 (0) ---

write(4, "\0", 1) = 1

rt_sigreturn(0x4) = -1 EINTR (Interrupted system call)

read(3, "\0", 16) = 1

open("pg_xlog/000000010000000100000017", O_RDWR) = 5

write(5, "}\320\6\0\1\0\\27\1\0\0\0\0\0\0\0\0\0\0\0L<\302x\322cuS"..., 8192) = 8192

fdatasync(5)

88

© 2013-2017 Hewlett-Packard Enterprise.

3.3.7 Behavior of process (Writing by checkpointer)
A checkpointer process is literally the process, which executes a checkpoint. When a checkpoint

occurs, checkpointer process coincide the contents between a storage and shared buffer due to write

a dirty buffer to a data file. The following example is a trace of the system calls, which are executed

by checkpointer process when CHECKPOINT statement is executed.

Example 61 The writing process by checkpointer (part)

Checkpointer process writes the checkpoint information in the pg_clog directory, and then updates

the vm (Visibility Map) file. After that, data file is updated block by block, and finally information of

the checkpoint completion is written to pg_control file.

open("pg_clog/0000", O_RDWR|O_CREAT, 0600) = 5

lseek(5, 0, SEEK_SET) = 0

write(5, "@UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU"..., 8192) = 8192

fsync(5) = 0

close(5) = 0

open("base/16499/24980_vm", O_RDWR) = 5

write(5, "\0\0\0\0\210\253h\262\0\0\0\0\0\0\0\0\0\200\365?\0"..., 8192) = 8192

open("base/16499/24980", O_RDWR) = 7 -- open data file

lseek(7, 442368, SEEK_SET) = 442368

write(7, "\0\0\0\3r\262\0\0\1\0\f\4\200\16\0 \4 -\10\0:\0\1\0"..., 8192) = 8192

--- Repeat lseek / write ---

open("base/16499/12725", O_RDWR) = 10

write(10, "\0\0\0\0\30\1\0\220\0\270\17\0 \4 \0\0\0\00\231|\3"..., 8192) = 8192

fsync(7) = 0

fsync(8) = 0

fsync(5) = 0

fsync(10) = 0

lseek(14, 7528448, SEEK_SET) = 7528448

write(14, "}\320\5\0\1\0\0\0\0\340r\262\0\0\0\0&\0\0\\0\0\0)\0"..., 8192) =

8192

fdatasync(14) = 0

open("global/pg_control", O_RDWR) = 11

write(11, 02x\322cuS\251\3\0\0\2672\1\f\6\0\0\311\237S\0\0\0\0"..., 240) = 240

fsync(11) = 0

close(11) = 0

89

© 2013-2017 Hewlett-Packard Enterprise.

3.3.8 Behavior of process (Writing by writer)
While checkpointer process is writing with a relatively long period, writer process is writing changed

pages (dirty buffers) little by little in a short period. It can prevent the peak of the I/O due to the

occurrence of checkpoint by writing of writer process. Writing interval of the writer process is

determined by the parameter bgwriter_delay (default: 200ms). Latency time is waited in the Linux /

UNIX platforms by "select (2)" system call, and in the Windows environment by Windows API

WaitForMultipleObjects (WaitLatch function in src/backend/port/win32_latch.c or

src/backend/port/pg_latch.c).

The maximum value of the number of write block is determined by the parameter

bgwriter_lru_maxpages. The default value is 100. The actual number of write blocks is calculated by

multiplying the number of blocks that have been recently requested and the value of the parameter

bgwriter_lru_multiplier. Even in that case, this number is not exceeded to the parameter

bgwriter_lru_maxpages. The actual writing is done only when the number of the necessary pages,

estimated by parameter bgwriter_lru_maxpages and the average number of the pages recently needed,

is larger than the number of the reusable pages.

Table 36 Parameters related to the writer process

Parameter Description Default Value

bgwriter_delay Writing interval of writer process 200ms

bgwriter_lru_maxpages Maximum number of writing pages; in case of 0,

the write is not executed

100

bgwriter_lru_multiplier Value to be applied to the average requested pages 2.0

3.3.9 Behavior of process (archiver)
Archiver process performs the archive of WAL files that has been completely written. It does the

archiving process with the following timing:

 Regularly at 60-second intervals

 Receive SIGUSR1 signal

In fact, it performs the following processing.

 Search the directory {PGDATA}/pg_xlog/archive_status

 Find {WALFILE}.ready file

 Run the specified command in the parameter archive_command using the "system" function

 Check the "system" function status

 Rename the file from {PGDATA}/pg_xlog/archive_status/{WALFILE}.ready to

{PGDATA}/pg_xlog/archive_status/{WALFILE}.done

90

© 2013-2017 Hewlett-Packard Enterprise.

Example 62 Major system call archiver process to be executed

In order to get the execution parameters of parameter archive_command, specify DEBUG3 on the

parameter log_min_messages. The following log is outputted.

Example 63 Log for command with archive_command parameter

In order to output a log at the time when the archive target of WAL has been determined, specify

DEBUG1 on the parameter log_min_messages. The following log is outputtted.

Example 64 Log for archived WAL file

--- SIGUSR1 (User defined signal 1) @ 0 (0) ---

rt_sigreturn(0x4) = -1 EINTR (Interrupted system call)

open("pg_xlog/archive_status", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 5

clone(child_stack=0, flags=CLONE_PARENT_SETTID|SIGCHLD,

parent_tidptr=0x7fffcc9877d8) = 5119

wait4(5119, [{WIFEXITED(s) && WEXITSTATUS(s) == 0}], 0, NULL) = 5119

--- SIGCHLD (Child exited) @ 0 (0) ---

rename("pg_xlog/archive_status/00000001000000000000003B.ready",

"pg_xlog/archive_status/00000001000000000000003B.done") = 0

sendto(9, "\v\0\0\0@\0\0\0\00000000001000000000000003"..., 64, 0, NULL, 0) = 64

DEBUG: executing archive command "/bin/cp

pg_xlog/000000010000000000000071 /arch/000000010000000000000071"

DEBUG: archived transaction log file "000000010000000000000071"

91

© 2013-2017 Hewlett-Packard Enterprise.

3.4 Online Backup

3.4.1 Behavior of online backup
 Online backup is a way to get a backup under instance startup condition. To do the online backup,

execute pg_start_backup function for the instance, and back up all the files of the database cluster.

When the backup is complete, execute pg_stop_backup function. These operations can be done

automatically by pg_basebackup command. Online backup must get the entire backup of the database

cluster (and the external table space). For the per-database backup, the logical backup such as

pg_dump command must be used.

□ Pg_start_backup function

This function declares the start of online backup. When this function is executed, WAL offset value

at the time of backup start appears. The label file "{PGDATA}/backup_label" is also created. In the

label file, start time and WAL of information backup are listed.

Example 65 The start of the online backup

Example 66 Backup_label file at runtime of pg_start_backup function

□ Pg_stop_backup function

This function declares the completion of the online backup. When this function is executed, WAL

offset value at the time of the end of the backup will be displayed. Label file

postgres=# SELECT pg_start_backup(now()::text) ;

pg_start_backup

 0/59000028

(1 row)

postgres=#

$ cat data/backup_label

START WAL LOCATION: 0/6000028 (file 000000010000000000000006)

CHECKPOINT LOCATION: 0/6000060

BACKUP METHOD: pg_start_backup

BACKUP FROM: master

START TIME: 2017-02-11 12:47:42 JST

LABEL: 2017-02-11 12:47:42.2466+09

92

© 2013-2017 Hewlett-Packard Enterprise.

"{PGDATA}/backup_label" created during the execution of pg_start_backup function is deleted, and

the new label file is created in an archiving log directory.

Example 67 End of online backup

When online backup is processed with parameter archive_mode set to "off", following warning

message will display on the execution of pg_stop_backup function.

Example 68 Finish on line backup (archive_mode="off")

□ Non-Exclusive mode

The pg_start_backup function and the pg_stop_backup function, parameters for the exclusive control

"exclusive" (boolean) has been added in PostgreSQL 9.6. The default value is "true", the behavior is

the same as previous versions. It does not create the backup_label files and tablespace_map file if you

specify the "exclusive" parameter to "false". Pg_stop_backup function you must specify the same

mode as the pg_start_backup function. When you run the pg_stop_backup function with Non-

Exclusive mode, the output result will change with the Exclusive mode.

postgres=# SELECT pg_stop_backup() ;

NOTICE: pg_stop_backup complete, all required WAL segments have been archived

 pg_stop_backup

 0/5B0000B8

(1 row)

postgres=# SELECT pg_stop_backup() ;

NOTICE: WAL archiving is not enabled; you must ensure that all required

WAL segments are copied through other means to complete the backup

 pg_stop_backup

 0/590000B8

(1 row)

93

© 2013-2017 Hewlett-Packard Enterprise.

Example 69 Online backup by the Non-Exclusive mode

3.4.2 Backup Label File
Backup label file is a text file in which information of online backup is stored. Executing

pg_start_backup function, it will be created as a "{PGDATA}/backup_label" file. Running

pg_stop_backup function, backup_label file is deleted after re-read the contents, and it will be created

in the following filename format in the same directory as the archive log.

Syntax 2 Filename format of Backup Label File

{WALFILE}.{WALOFFSET}.backup

postgres=# SELECT pg_start_backup(now()::text, false, false) ;

 pg_start_backup

 0/8000028

(1 row)

postgres=# SELECT pg_stop_backup() ;

ERROR: non-exclusive backup in progress

HINT: Did you mean to use pg_stop_backup('f')?

postgres=#

postgres=# SELECT pg_stop_backup(false) ;

NOTICE: pg_stop_backup complete, all required WAL segments have been archived

 pg_stop_backup

(0/8000130,"START WAL LOCATION: 0/8000028 (file 000000010000000000000008)+

 CHECKPOINT LOCATION: 0/8000060 +

 BACKUP METHOD: streamed +

 BACKUP FROM: master +

 START TIME: 2017-02-11 12:50:16 JST +

 LABEL: 2017-02-11 12:50:15.900273+09 +

 ","16384 /home/postgres/ts1 +

 ")

(1 row)

94

© 2013-2017 Hewlett-Packard Enterprise.

If there remains backup_label file at instance stop, it will be renamed to backup_label.old file in the

same directory. This process will also be executed if "pg_ctl stop -m immediate" command is executed.

Even if backup_label file still remains at instance startup, the file is renamed to backup_label.old and

then instance is started. Nothing is outputted to the log. Backup Label File is in text format, and

information about online backup are listed in it.

Table 37 Contents of Backup Label File

Line# Output contents Description Note

1 START WAL LOCATION: WAL location of start backup

2 STOP WAL LOCATION: WAL location of finish backup

3 CHECKPOINT LOCATION: Checkpoint information

4 BACKUP METHOD: Backup method

5 BACKUP FROM: Backup source

6 START TIME: Backup start date/time

7 LABEL: Backup label Specify by

pg_start_backup

function

8 STOP TIME: Stop time Added by

pg_stop_backup

function

STOP TIME, in the last line, will be output only when pg_stop_backup function is executed.

Example 70 Backup Label File

START WAL LOCATION: 0/8000028 (file 000000010000000000000008)

STOP WAL LOCATION: 0/8000130 (file 000000010000000000000008)

CHECKPOINT LOCATION: 0/8000060

BACKUP METHOD: streamed

BACKUP FROM: master

START TIME: 2017-02-11 12:50:16 JST

LABEL: 2017-02-11 12:50:15.900273+09

STOP TIME: 2017-02-11 12:50:36 JST

95

© 2013-2017 Hewlett-Packard Enterprise.

3.4.3 Online Backup with Replication Environment
Online backup function can be executed only at the master instance. When pg_start_backup function

is executed at a slave instance, "ERROR: recovery is in progress" error will occur.

Example 71 Start online backup at the slave instance

 When pg_is_in_backup function is executed at a slave instance while online backup is running on

the master instance, "f" (not in online backup) is retuned.

Example 72 Check online backup status at the slave instance

3.4.4 Instance shutdown with online backup
During the online backup, instance stop specified the smart mode would fail. Even if the stop

operation fails, general users cannot connect for instance because the instance becomes the status in

shutdown. To force to stop, the instance during online backup, specify the fast mode to pg_ctl

command.

postgres=# SELECT pg_start_backup(now()::text) ;

ERROR: recovery is in progress

HINT: WAL control functions cannot be executed during recovery.

postgres=#

postgres=# SELECT pg_is_in_backup() ;

 pg_is_in_backup

 f

(1 row)

96

© 2013-2017 Hewlett-Packard Enterprise.

Example 73 Shutdown during online backup

postgres=# SELECT pg_start_backup(now()::text) ;

 pg_start_backup

 0/A5000028

(1 row)

postgres=# \q

$

$ pg_ctl -D data stop –m smart

WARNING: online backup mode is active

Shutdown will not complete until pg_stop_backup() is called.

waiting for server to shut

down... failed

pg_ctl: server does not shut down

HINT: The "-m fast" option immediately disconnects sessions rather than

waiting for session-initiated disconnection.

$ echo $?

1

$ pg_ctl -D data stop -m fast

waiting for server to shut down....

done

server stopped

$

97

© 2013-2017 Hewlett-Packard Enterprise.

3.5 File Format

3.5.1 Postmaster.pid
Postmaster.pid file is a text file that is created within the database cluster. It is created at instance

startup, and removed at the time of instance normal shutdown. The manual says that pg_ctl command

confirms the operation of the instance by the presence of the file, but in fact using the process ID

written in a first line of the file. The information written to the postmaster.pid has been defined as row

number of "LOCK_FILE_LINE_ *" macro in the source code (src/include/miscadmin.h).

Table 38 The contents of postmaster.pid file

Line# Description Note

1 postmaster process ID decimal

2 The path of the database cluster directory

3 Instance start time

4 IPv4 connection waiting port number

5 Socket creation directory for local connections

6 IPv4 connection waiting address

7 The key of System V shared memory, ID information decimal

If the process with an ID written in the first line of the file does not exist, pg_ctl status command or

pg_ctl stop command does not work.

Example 74 Contents of postmaster.pid file

$ cat data/postmaster.pid

15141

/home/postgres/data

1475205932

5432

/tmp

*

 5432001 196608

$

98

© 2013-2017 Hewlett-Packard Enterprise.

□ Parameter external_pid_file

If you specify the file name (or the path including the directory name) to the parameter

external_pid_file, a file is created to write the ID of the postmaster process in it, in addition to the

postmaster.pid file. However, the information output to the file specified in the external_pid_file is

only the process ID of the postmaster. The pg_ctl command does not refer to the external_pid_file.

While postmaster.pid file is created with protected mode "-rw-------", the file specified in the

external_pid_file is created with the protection mode "-rw-r-r--", so it can be referred by the user other

than PostgreSQL administrator.

The startup process will be done successfully even if the file specified in the parameter

external_pid_file cannot be created at instance startup.

3.5.2 Postmaster.opts
Postmaster.opts file holds the parameters at the time of start-up postmaster process, and it will be

created at instance startup. This file is not deleted even when the instance stops. If there is no write

access privilege to this file at instance startup, instance startup will result in an error. In this file, the

parameters that were specified in the pg_ctl start command are output.

Example 75 Contents of postmaster.opts file

3.5.3 PG_VERSION
PG_VERSION files are text files that are created automatically in the database cluster and database

oid directory in the tablespace. Basically the major version of PostgreSQL is listed. This file is a simple

text file, but if the file in the database cluster is lost, then instance cannot startup, and a client cannot

connect to the database if file in the database oid directory is lost.

$ pg_ctl start –D data

$ cat data/postmaster.opts

/usr/local/pgsql/bin/postgres "-D" "data"

$ pg_ctl stop

$ pg_ctl start

$ cat data/postmaster.opts

/usr/local/pgsql/bin/postgres

$

99

© 2013-2017 Hewlett-Packard Enterprise.

Example 76 Contents of PG_VERSION file

3.5.4 Pg_control
Pg_control file is a small binary file that is stored in the {PGDATA}/global directory. The size of this

file is 8 KB (defined as PG_CONTROL_SIZE in src/include/catalog/within pg_control.h). The data

actually written is defined in the structure ControlFileData (src/include/catalog/pg_control.h).

□ Contents of pg_control file

The main contents of pg_control file can be confirmed by pg_controldata command or dedicated

functions.

$ cd /usr/local/pgsql/data

$ cat PG_VERSION

9.6

$

100

© 2013-2017 Hewlett-Packard Enterprise.

Example 77 pg_controldata command execution

By the execution of this command, fixed information such as version information and the database

ID, the last update time, the state of the instance, checkpoint information, and the information at the

$ pg_controldata data

pg_control version number: 960

Catalog version number: 201608131

Database system identifier: 6335932445819631823

Database cluster state: in production

pg_control last modified: Fri Feb 11 12:55:16 2017

Latest checkpoint location: 0/9000098

Prior checkpoint location: 0/8000060

Latest checkpoint's REDO location: 0/9000060

Latest checkpoint's REDO WAL file: 000000010000000000000009

Latest checkpoint's TimeLineID: 1

…………

Latest checkpoint's newestCommitTsXid:0

Time of latest checkpoint: Fri Feb 11 12:55:16 2017

Fake LSN counter for unlogged rels: 0/1

Minimum recovery ending location: 0/0

Min recovery ending loc's timeline: 0

Backup start location: 0/0

Backup end location: 0/0

End-of-backup record required: no

…………

Blocks per segment of large relation: 131072

WAL block size: 8192

Bytes per WAL segment: 16777216

Maximum length of identifiers: 64

Maximum columns in an index: 32

Maximum size of a TOAST chunk: 1996

Size of a large-object chunk: 2048

Date/time type storage: 64-bit integers

Float4 argument passing: by value

Float8 argument passing: by value

Data page checksum version: 0

101

© 2013-2017 Hewlett-Packard Enterprise.

compilation are output. As can be seen from the output result of pg_controldata command,

pg_control information is updated at the time of the checkpoint and the instance status change.

Information of pg_control file can also be acquired by using the following functions. These

functions have been added in PostgreSQL 9.6.

Table 39 Functions for pg_control information

Function name Description

pg_control_checkpoint Execution status of the checkpoint

pg_control_init Information of the determined various limits at compile time

pg_control_recovery Backup / recovery information

pg_control_system Version information, system ID information

Example 78 Execute pg_control_system function

□ Database cluster state

In "Database cluster state", which is execution result of pg_controldata command, the state of the

database cluster recognized by the current pg_control file is output.

postgres=> \x

Expanded display is on.

postgres=> SELECT * FROM pg_control_system() ;

-[RECORD 1]------------+-----------------------

pg_control_version | 960

catalog_version_no | 201608131

system_identifier | 6335932445819631823

pg_control_last_modified | 2017-02-11 13:00:16+09

102

© 2013-2017 Hewlett-Packard Enterprise.

Table 40 Database cluster state

File’s value Output message Description

0 starting up Instance is starting up

1 shut down Instance was shut downed normally

2 shut down in recovery Instance is shut downed in recovery

3 shutting down Instance is on shutting down

4 in crash recovery Instance is in crash recovery state

5 in archive recovery Instance is in archive recovery state

6 in production Instance started normally

- unrecognized status code Unknown status (Broken pg_control?)

□ Database system identifier

In "Database system identifier" item, ID number that uniquely identifies each database cluster

(unsigned 64-bit integer) is output. This number is determined at the creation of the database cluster,

and it is never changed. Streaming replication will be performed between the database clusters,

which have the same ID. In addition, this number is also recorded in the first block of the WAL file

(XLogLongPageHeaderData structure). This avoids that to be used for recover by mistake WAL files

of different databases.

Database system identifier generates a unique number by the following code (in BootStrapXLOG

function).

Example 79 BootStrapXLOG function（src/backend/access/transam/xlog.c）

uint64 sysidentifier;

gettimeofday(&tv, NULL);

sysidentifier = ((uint64) tv.tv_sec) << 32;

sysidentifier |= ((uint64) tv.tv_usec) << 12;

sysidentifier |= getpid() & 0xFFF;

103

© 2013-2017 Hewlett-Packard Enterprise.

Example 80 Header structure of WAL File（src/include/access/xlog_internal.h）

3.5.5 pg_filenode.map
Pg_filenode.map file will be saved in the "{PGDATA}/global directory" and "directory for the

database", it is a small binary file. The size of the file is 512 bytes. This file contains the information

to correspond to the actual file name and OID of the part of the system catalog. Storage format is

defined in RelMapFile structure.

Example 81 Stored format (src/backend/utils/cache/relmapper.c)

/*

 * When the XLP_LONG_HEADER flag is set, we store additional fields in the

 * page header. (This is ordinarily done just in the first page of an

 * XLOG file.) The additional fields serve to identify the file accurately.

 */

typedef struct XLogLongPageHeaderData

{

 XLogPageHeaderData std; /* standard header fields */

 uint64 xlp_sysid; /* system identifier from pg_control */

 uint32 xlp_seg_size; /* just as a cross-check */

 uint32 xlp_xlog_blcksz; /* just as a cross-check */

} XLogLongPageHeaderData;

typedef struct RelMapping

{

 Oid mapoid; /* OID of a catalog */

 Oid mapfilenode; /* its filenode number */

} RelMapping;

typedef struct RelMapFile

{

 int32 magic; /* always RELMAPPER_FILEMAGIC */

 int32 num_mappings; /* number of valid RelMapping entries */

 RelMapping mappings[MAX_MAPPINGS];

 pg_crc32c crc; /* CRC of all above */

 int32 pad; /* to make the struct size be 512 exactly */

} RelMapFile;

104

© 2013-2017 Hewlett-Packard Enterprise.

The first four bytes (magic) is a fixed value 0x592717 (5842711). The number of mapping to the

next 4 bytes is stored. The example below is the content of the following file specific database

directory.

Example 82 Contents of pg_filenode.map file

 The pg_filenode.map in directory ${PGDATA}/global contains the following table.

 pg_pltemplate

 pg_pltemplate_name_index

 pg_tablespace

 pg_shdepend

 pg_shdepend_depender_index

 pg_shdepend_reference_index

 pg_authid

 pg_auth_members

 pg_database

 pg_shdescription (with TOAST table and TOAST index)

 pg_shdescription_o_c_index

 pg_database_datname_index

 pg_database_oid_index

 pg_authid_rolname_index

 pg_authid_oid_index

$ od -t u4 pg_filenode.map

0000000 5842711 15 1259 1259 -- Include 15 entry

0000020 1249 1249 1255 1255 -- OID and file name set

0000040 1247 1247 2836 2836

0000060 2837 2837 2658 2658

0000100 2659 2659 2662 2662

0000120 2663 2663 3455 3455

0000140 2690 2690 2691 2691

0000160 2703 2703 2704 2704

0000200 0 0 0 0

*

0000760 0 0 983931237 0 -- CRC and Padding data

0001000

105

© 2013-2017 Hewlett-Packard Enterprise.

 pg_auth_members_role_member_index

 pg_auth_members_member_role_index

 pg_tablespace_oid_index

 pg_tablespace_spcname_index

 pg_db_role_setting (with TOAST table and TOAST index)

 pg_db_role_setting_databaseid_rol_index

 pg_shseclabel (with TOAST table and TOAST index)

 pg_shseclabel_object_index

 pg_replication_origin

 pg_replication_origin_roiident_index

 pg_replication_origin_roname_index

 The pg_filenode.map in directory for database contains the following table.

 pg_class

 pg_attribute

 pg_proc (with TOAST table and TOAST index)

 pg_type

 pg_attribute_relid_attnam_index

 pg_attribute_relid_attnum_index

 pg_class_oid_index

 pg_class_relname_nsp_index

 pg_class_tblspc_relfilenode_index

 pg_proc_oid_index

 pg_proc_proname_args_nsp_index

 pg_type_oid_index

 pg_type_typname_nsp_index

106

© 2013-2017 Hewlett-Packard Enterprise.

3.6 Block format

3.6.1 Block and Page
In PostgreSQL, I / O is done on a block basis. The size of the block is 8 KB by default. In order to

change the value it is necessary to change the "#define BLOCKSZ 8192" in the

"src/include/pg_config.h" and recompile it. In current PostgreSQL, a block contains one page,

therefore a block and a page can be considered the same thing. 131,072 blocks (pages) can be stored

within one file. When the data file exceeds this size (8 KB × 131,072 = 1 GB), a new file is created.

This value is determined by the RELSEG_SIZE macro of pg_config.h file.

In each page, a pointer to each tuple in the page and to the page header is stored. Item pointer

indicates the location of the tuples in the page. Tuple is stored towards the top of the page from the

end of the page. On the other hand, item pointer will be added towards the end of the page immediately

after the page header.

Figure 9 Page Structure

Page header is defined in the structure PageHeaderData in the "src/include/storage/bufpage.h".

Page

 Page Header

Item Pointer #0

Tuple #0

Item Pointer #1

Tuple #1

107

© 2013-2017 Hewlett-Packard Enterprise.

Example 83 PageHeaderData structure

Table 41 PageHeaderData internal

Variables Description Note

pd_lsn Log sequence number

pd_checksum Checksum value Changed at 9.3

pd_flags Flags

pd_lower Starting position of the free space in the page

pd_upper End position of the free space in the page

pd_special End region of the special space in the page

pd_pagesize_version Page size and version information

pd_prune_xid XMAX value, which is the oldest in the page and

is not truncated. If it does not exist, this value is

zero

pd_linp[] Item pointer

3.6.2 Tuple
The structure of the tuple (record) consists of "Tuple Header", "NULL bitmap", and "data". Tuple

header is defined in the "src/include/access/htup_details.h". In T_heap, defined tuple header top, the

transaction-related information is recorded. NULL bitmaps are stored in t_bits field.

typedef struct PageHeaderData

{

 /* XXX LSN is member of *any* block, not only page-organized ones */

 PageXLogRecPtr pd_lsn; /* LSN: next byte after last byte of xlog

 * record for last change to this page */

 uint16 pd_checksum; /* checksum */

 uint16 pd_flags; /* flag bits, see below */

 LocationIndex pd_lower; /* offset to start of free space */

 LocationIndex pd_upper; /* offset to end of free space */

 LocationIndex pd_special; /* offset to start of special space */

 uint16 pd_pagesize_version;

 TransactionId pd_prune_xid; /* oldest prunable XID, or zero if none */

 ItemIdData pd_linp[1]; /* beginning of line pointer array */

} PageHeaderData;

108

© 2013-2017 Hewlett-Packard Enterprise.

Example 84 HeapTupleHeaderData structure

Example 85 HeapTupleFields (t_heap)

struct HeapTupleHeaderData

{

 union

 {

 HeapTupleFields t_heap;

 DatumTupleFields t_datum;

 } t_choice;

 ItemPointerData t_ctid; /* current TID of this or newer tuple */

 /* Fields below here must match MinimalTupleData! */

 uint16 t_infomask2; /* number of attributes + various flags */

 uint16 t_infomask; /* various flag bits, see below */

 uint8 t_hoff; /* sizeof header incl. bitmap, padding */

 /* ^ - 23 bytes - ^ */

 bits8 t_bits[1]; /* bitmap of NULLs -- VARIABLE LENGTH */

 /* MORE DATA FOLLOWS AT END OF STRUCT */

};

typedef struct HeapTupleFields

{

 TransactionId t_xmin; /* inserting xact ID */

 TransactionId t_xmax; /* deleting or locking xact ID */

 union

 {

 CommandId t_cid; /* inserting or deleting command ID, or both */

 TransactionId t_xvac; /* old-style VACUUM FULL xact ID */

 } t_field3;

} HeapTupleFields;

109

© 2013-2017 Hewlett-Packard Enterprise.

Table 42 HeapTupleFields internal

Variable Description Note

t_xmin Inserted XID

t_xmax Deleted XID Usually 0, updated even if

ROLLBACK occurs

t_cid Deleted command ID

t_xvac Version that has been moved by VACUUM

T_xmin and t_max fields of tuple correspond to the virtual column XMIN and XMAX.

110

© 2013-2017 Hewlett-Packard Enterprise.

3.7 Wraparound problem of transaction ID

3.7.1 Transaction ID
When a transaction starts in PostgreSQL, a unique transaction ID is issued (obtained in txid_current

function). The size of the transaction ID is an unsigned 32-bit (as defined in src/include/c.h). When

the tuple of the table is updated, updated transaction ID is stored to each tuple header. By this feature,

PostgreSQL can maintain referential integrity on search.

□ Confirmation of the transaction ID

Transaction ID corresponding to the tuples on the table can be checked by specifying the XMAX and

XMIN pseudo column. XMIN column shows the transaction ID where tuple is added (by INSERT or

UPDATE). XMAX column is the transaction ID of the deleted tuple. For this reason, valid tuple’s

XMAX value is zero. In the example below, the XMAX value is non-zero in the column of C1 = 300,

this indicates that the update transaction is rolled back.

Example 86 Transaction ID of the tuples

□ Transaction ID wraparound

Transaction ID has a size of unsigned 32-bit, and it will increase monotonically. In large systems,

utilizing a large number of transactions may runs out 32 bits. Therefore, a mechanism is provided to

avoid the problem when the transaction ID of PostgreSQL wraparound. This mechanism replaces the

old transaction ID to a special value (FrozenXID = 2) regularly.

This replacement process is referred to as the FREEZE process, and usually done in the VACUUM

processing. When the number of the transactions for the table exceeds the number calculated in the

parameter "autovacuum_freeze_max_age - vacuum_freeze_min_age" FREEZE process occurs even

if the automatic VACUUM is invalid.

postgres=> SELECT XMAX, XMIN, c1 FROM data1 ;

 xmin | xmax | c1

--------+--------+-----

 507751 | 0 | 100

 507752 | 0 | 200

 507754 | 0 | 400

 507755 | 0 | 500

 507756 | 507757 | 300

(5 rows)

111

© 2013-2017 Hewlett-Packard Enterprise.

Automatic VACUUM discover the processing target block using the Visibility Map. When the

FREEZE process is completed, automatic VACUUM process update the Visibility Map. When the

number of transactions that have been specified in the parameter vacuum_freeze_table_age is executed,

it performs the search for a block that has not been Freeze from Visibility Map.

Transaction ID, which is a freeze target of each table, is defined by relfrozenxid column of pg_class

catalog. This column is the minimum value of XMIN virtual column in the table (except FrozenXID).

The minimum value of relfrozenxid of pg_class catalog can be found in the datfrozenxid column of

pg_database catalog.

□ In case of automatic VACUUM process failure

If FREEZE process is not performed for some reason, when the remaining transaction number to the

wraparound falls below 10 million, following message is outputted.

Example 87 Warning message for transaction wraparound

WARNING: database "postgres" must be vacuumed within 9999999 transactions

HINT: To avoid a database shutdown, execute a database-wide VACUUM in "postgres".

Moreover, when the remaining transaction number falls below 1 million, the following message is

output, and the system will stop.

Example 88 Error message for transaction wraparound

ERROR: database is not accepting commands to avoid wraparound data loss in

database "postgres"

HINT: Stop the postmaster and use a standalone backend to VACUUM in "postgres".

Database fallen into such a state starts in stand-alone mode, and executes VACUUM statement. In

the example below VACUUM processing is performed to postgres database.

Example 89 Start by stand-alone mode and VACUUM

$ postgres --single -D data postgres

PostgreSQL stand-alone backend 9.6.2

backend> VACUUM

backend>

112

© 2013-2017 Hewlett-Packard Enterprise.

3.7.2 The parameters for the FREEZE processing
Parameters for FREEZE operation of the transaction ID is as follows:

□ Autovacuum_freeze_max_age

Specifies the maximum age that pg_class.relfrozenxid can reach in order to prevent the circulation

of the transaction ID. Even if automatic VACUUM is disabled, it will launch VACUUM worker

process. The default value is 200 million (200,000,000). The minimum value is 100 million

(100,000,000), the maximum 2 billion (2,000,000,000).

□ Vacuum_freeze_min_age

Specifies the cut-off age to replace the transaction ID to FrozenXID at the time of table scan by

VACUUM. The default value is 50 million (50,000,000). The value from 0 to 50% of

autovacuum_freeze_max_age can be specified.

□ Vacuum_freeze_table_age

When pg_class.relfrozenxid of the table reaches to the time specified in this value, VACUUM scans

the table aggressively. The default value is 150 million (150,000,000). The value can be specified from

0 to 1 billion (1,000,000,000) or up to 95% of the autovacuum_freeze_max_age.

PostgreSQL 9.3.3 later, the following parameters have been added. There are multi transaction ID

(MultiXactId) and the parameters for the freeze, but details are unconfirmed.

 autovacuum_multixact_freeze_max_age

 vacuum_multixact_freeze_min_age

 vacuum_multixact_freeze_table_age

113

© 2013-2017 Hewlett-Packard Enterprise.

3.8 Locale specification

3.8.1 Specifying the locale and encoding
The default locale setting is specified in --locale parameter of the initdb command. When encoding

is also specified in --locale parameter, it becomes the defaults to the encoding.

Example 90 Specify the locale name and encoding as locale

When only the locale name is specified in the locale, the default encoding of the locale is used. In

the case that ja_JP is specified as locale, Japanese EUC (EUC_JP) is specified as the encoding.

Example 91 Specified only locale name as the locale

 When only the encoding is specified without using the locale, encoding sequence of pg_database

catalog is specified, but in the locale-related column (datcollate, etc.) "C" is output.

$ export LANG=C

$ initdb --locale=ja_JP.utf8 data

The files belonging to this database system will be owned by user "postgres".

This user must also own the server process.

The database cluster will be initialized with locale "ja_JP.utf8".

The default database encoding has accordingly been set to "UTF8".

initdb: could not find suitable text search configuration for locale "ja_JP.utf8"

The default text search configuration will be set to "simple".

…………

$ export LANG=en_US.utf8

$ initdb --locale=ja_JP data

The files belonging to this database system will be owned by user "postgres".

This user must also own the server process.

The database cluster will be initialized with locale "ja_JP".

The default database encoding has accordingly been set to "EUC_JP".

initdb: could not find suitable text search configuration for locale "ja_JP"

The default text search configuration will be set to "simple".

…………

114

© 2013-2017 Hewlett-Packard Enterprise.

Example 92 Specify encoding without using the locale

In the table below, the relationship between the specification method of the initdb command and the

locale of the database cluster under the conditional where ja_JP.utf8 is specified in the environment

variable LANG.

Table 43 initdb command and locale

initdb command parameter lc_collate lc_ctype encoding

not specified ja_JP.utf8 ja_JP.utf8 UTF8

--locale=ja_JP ja_JP ja_JP EUC_JP

--locale=ja_JP --encoding=utf8 initdb command error

--locale=ja_JP.utf8 ja_JP.utf8 ja_JP.utf8 UTF8

--locale=ja_JP.EUC_JP --encoding=utf8 initdb command error

--no-locale C C SQL_ASCII

--no-locale --encoding=utf8 C C UTF8

□ The function of the ja_JP locale setting

 Sorry, Japanese version document only.

$ initdb --no-locale --encoding=utf8 data

The files belonging to this database system will be owned by user "postgres".

This user must also own the server process.

The database cluster will be initialized with locale "C".

The default text search configuration will be set to "english".

…………

postgres=> SELECT datname, pg_encoding_to_char(encoding), datcollate FROM

 pg_database ;

 datname | pg_encoding_to_char | datcollate

-----------+---------------------+------------

 template1 | UTF8 | C

 template0 | UTF8 | C

 postgres | UTF8 | C

(3 rows)

115

© 2013-2017 Hewlett-Packard Enterprise.

3.8.2 The use of the index by LIKE
In locale enabled database, there is a specification that index of the corresponding column is not

used in the front match by LIKE clause.

Example 93 LIKE search with locale use

Execution plan becomes Seq Scan, and you can confirm that all tuples search is performed. In order

to avoid such situation, specify the option when CREATE INDEX statement is executed to perform

the index search by binary.

Syntax 3 Option specification of the CREATE INDEX statement

Depending on the data type of the column, the following options can be specified.

postgres=> CREATE TABLE locale1(c1 varchar(10), c2 varchar(10)) ;

CREATE TABLE

postgres=> CREATE INDEX idx1_locale1 ON locale1(c1) ;

CREATE INDEX

postgres=> INSERT INTO locale1 VALUES ('ABC', 'DEF') ;

INSERT 0 1

………

postgres=> ANALYZE locale1 ;

ANALYZE

postgres=> EXPLAIN SELECT C1 FROM locale1 WHERE C1 LIKE 'A%' ;

 QUERY PLAN

 Seq Scan on locale1 (cost=0.00..1790.01 rows=10 width=5)

 Filter: ((c1)::text ~~ 'A%'::text)

 Planning time: 1.742 ms

(3 rows)

CREATE INDEX index_name ON table_name (column_name optional)

116

© 2013-2017 Hewlett-Packard Enterprise.

Table 44 Binary comparison options

Column data type Option

varchar varchar_pattern_ops

char bpchar_pattern_ops

text text_pattern_ops

name name_pattern_ops

Example 94 LIKE search when option specified

3.8.3 Using the index by <, > operators
In the LIKE operator, option specification is necessary. However, if users want to use an index with

operators "<" and ">" to compare the value, the options described in the previous section cannot be

used.

postgres=> CREATE INDEX idx2_locale1 ON locale1(c2 varchar_pattern_ops) ;

CREATE INDEX

postgres=> \d locale1

 Table "public.locale1"

 Column | Type | Modifiers

--------+-----------------------+-----------

 c1 | character varying(10) |

 c2 | character varying(10) |

Indexes:

 "idx1_locale1" btree (c1)

 "idx2_locale1" btree (c2 varchar_pattern_ops)

postgres=> EXPLAIN SELECT C2 FROM locale1 WHERE C2 LIKE 'A%' ;

 QUERY PLAN

--

 Index Only Scan using idx2_locale1 on locale1 (cost=0.42..8.44 rows=10 width=5)

 Index Cond: ((c2 ~>=~ 'A'::text) AND (c2 ~<~ 'B'::text))

 Filter: ((c2)::text ~~ 'A%'::text)

 Planning time: 0.541 ms

(4 rows)

117

© 2013-2017 Hewlett-Packard Enterprise.

Example 95 Specified at the time of the index option

postgres=> \d locale1

 Table "public.locale1"

 Column | Type | Modifiers

--------+-----------------------+-----------

 c1 | character varying(10) |

 c2 | character varying(10) |

Indexes:

 "idx1_locale1" btree (c1)

 "idx2_locale1" btree (c2 varchar_pattern_ops)

postgres=> EXPLAIN SELECT c1 FROM locale1 WHERE c1 < '10' ;

 QUERY PLAN

--

 Index Only Scan using idx1_locale1 on locale1 (cost=0.42..334.75 rows=306

width=5)

 Index Cond: (c1 < '10'::text)

 Planning time: 0.210 ms

(3 rows)

postgres=> EXPLAIN SELECT c2 FROM locale1 WHERE c2 < '10' ;

 QUERY PLAN

 Seq Scan on locale1 (cost=0.00..1790.01 rows=10 width=5)

 Filter: ((c2)::text < '10'::text)

 Planning time: 0.140 ms

(3 rows)

118

© 2013-2017 Hewlett-Packard Enterprise.

3.8.4 Locale and encoding of the specified location
The locale and encoding can be specified not only on the creation of the database cluster, but also on

the database creation. It the locale / encoding different from the default is specified, it is necessary to

specify template0 as a template and specify ENCODING, LC_COLLATE, and LC_CTYPE clause.

Example 96 Specifying the locale and encoding

The above example specifies a "C" to LC_COLLATE and LC_CTYPE, but in order to create a

database in a different locale, specify the locale name and encoding name to both parameters. If you

specify Japanese EUC to encoding, "eucjp" or "EUC_JP" can also be specified.

postgres=# CREATE DATABASE eucdb1 WITH TEMPLATE=template0 ENCODING='EUC_JP'

 LC_COLLATE='C' LC_CTYPE ='C' ;

CREATE DATABASE

postgres=# \l

 List of databases

 Name | Owner | Encoding | Collate | Ctype | Access privileges

-----------+----------+----------+------------+------------+----------------------

-

 eucdb1 | postgres | EUC_JP | C | C |

 postgres | postgres | UTF8 | ja_JP.utf8 | ja_JP.utf8 |

 datadb1 | user1 | UTF8 | ja_JP.utf8 | ja_JP.utf8 |

 template0 | postgres | UTF8 | ja_JP.utf8 | ja_JP.utf8 | =c/postgres +

 | | | | | postgres=CTc/postgres

 template1 | postgres | UTF8 | ja_JP.utf8 | ja_JP.utf8 | =c/postgres +

 | | | | | postgres=CTc/postgres

 (5 rows)

119

© 2013-2017 Hewlett-Packard Enterprise.

3.9 Data Checksum
Block checksum function has been added from PostgreSQL 9.3. For each block, the checksum is

given during the update, and check is performed on reading.

3.9.1 Specifying the checksum
Checksum feature is disabled by default, but you can create a database cluster that have enabled the

checksum by specifying the -k8 option to initdb command.

Example 97 Enable checksum features

3.9.2 Checksum location
The checksum is stored as a 16-bit area behind pd_lsn field in the page header. This place is the part,

where timeline ID (pd_tli) was stored up to PostgreSQL 9.2. Since the checksum header size has not

still changed by adding checksum, there is no change in I/O amount in comparison with the previous

version. CPU resources for calculations and check of checksum are expected to increase. The structure

of the page header (PageHeaderData) is defined in the header file src/include/storage/bufpage.h.

Additional checksum will be conducted at the time of writing of the page. Actual checksum is created

in pg_checksum_page function in a header file include/storage/checksum_impl.h.

8 Or --data-checksums option

$ initdb -k datak

The files belonging to this database system will be owned by user "postgres".

This user must also own the server process.

The database cluster will be initialized with locale "en_US.UTF-8".

The default database encoding has accordingly been set to "UTF8".

The default text search configuration will be set to "english".

Data page checksums are enabled. -- enabled checksum features

……………

120

© 2013-2017 Hewlett-Packard Enterprise.

Example 98 Page Header Structure

3.9.3 Checksum Error
□ Verification of checksum

Checksum verification is done at the time when the read of the block into the shared buffer has been

completed. If a checksum error is detected, it is logged by ReadBuffer_common function of source

code src/backend/storage/buffer/bufmgr.c. Actual verification is done in PageIsVerified function of

source code src/backend/storage/page/bufpage.c. The following errors will occur in case of incorrect

checksum detection.

Example 99 Incorrect checksum error

For the tables where checksum error occurs, the subsequent execution of the DML cause all the same

error.

□ Ignore checksum

The parameter ignore_checksum_failure is set to "on", PostgreSQL ignores the error of checksum

(default: "off").

typedef struct PageHeaderData

{

 /* XXX LSN is member of *any* block, not only page-organized ones */

 PageXLogRecPtr pd_lsn; /* LSN: next byte after last byte of xlog

 * record for last change to this page */

 uint16 pd_checksum; /* checksum */

 uint16 pd_flags; /* flag bits, see below */

 LocationIndex pd_lower; /* offset to start of free space */

 LocationIndex pd_upper; /* offset to end of free space */

 LocationIndex pd_special; /* offset to start of special space */

 uint16 pd_pagesize_version;

 TransactionId pd_prune_xid; /* oldest prunable XID, or zero if none */

 ItemIdData pd_linp[1]; /* beginning of line pointer array */

} PageHeaderData;

WARNING: page verification failed, calculated checksum 2773 but expected 29162

ERROR: invalid page in block 0 of relation base/12896/16385

121

© 2013-2017 Hewlett-Packard Enterprise.

3.9.4 Check the existence of checksum
In order to confirm the checksum specification for a database cluster, verify the execution result of

pg_controldata utility, parameters data_checksums or pg_control_init function. Parameter

data_checksums is available from PostgreSQL 9.3.4.

Example 100 Checking the checksum

$ pg_controldata ${PGDATA} | grep checksum

Data page checksum version: 1 -- Checksum enabled

$

$ psql

postgres=> SHOW data_checksums ;

 data_checksums

 on -- Checksum enabled

(1 row)

postgres=> SELECT data_page_checksum_version FROM pg_control_init() ;

 data_page_checksum_version

 1 -- Checksum enabled

(1 row)

122

© 2013-2017 Hewlett-Packard Enterprise.

3.10 Log File
This section describes the log files that PostgreSQL outputs.

3.10.1 Output of the log file
PostgreSQL outputs two types of logs; the log for outputs of the activity during an instance start, and

the log for pg_ctl commands.

□ Instance activity log

Log output destination during the instance running is determined by parameters log_destination

(default: "stderr"). It will transfer to SYSLOG when the value of this parameter is set to "syslog"

(specified in "eventlog" in the Windows environment).

When the parameter log_destination is set to "stderr" or "csv", and parameter logging_collector

specified to "on" (default: "off"), the log is written to a file.

Table 45 Output destination of the log file (parameter log_destination)

Parameter values Description Note

stderr Standard error output

csvlog CSV file Require logging_collector=on

syslog SYSLOG transfer

eventlog Windows event Only in the Windows environment

□ Start / stop instance log

In order to output the execution result of pg_ctl command to a log file, specify the file name with the

-l option. If not specified, it is output to the standard output. If the log file cannot be created, start of

the instance (pg_ctl start) will fail and it cannot be started, but stop Instance (pg_ctl stop) is

successfully. The log will be appended if an existing file name is specified in the -l option.

□ Output method of log file

Log file is opened by "fopen" function, and written by "fwrite" function. Since "fflush" function is

not performed for each write, in case of OS crash or using storage replication, log might not be written

partly.

3.10.2 Log file name
This section describes the elements that determine the log file name.

123

© 2013-2017 Hewlett-Packard Enterprise.

□ Parameters

Output destination and file name of the log file are determined by the following parameters.

Table 46 Determination of the log file

Parameter Description Default Value

log_directory Log file output directory path pg_log

log_filename Log file name postgresql-%Y-%m-%d_%H%M%S.log

log_file_mode Log file access mode 0600

In the parameter log_directory, you can specify a relative path from the database cluster or an absolute

path. It is automatically created during the instance start if the specified directory does not exist.

Instance startup will fail if the directory cannot be created. Following example is an instance startup

error when value "/var" is specified to the parameter log_directory.

Example 101 Directory creation error

When "%A" is included in parameter log_filename, a day of the week name in English is output

without depending on a locale of a database cluster.

□ Output CSV file

When "csvlog" is designated in parameter log_destination, the output form of the log file becomes

CSV, i.e., with comma (,) separation.

Example 102 CSV File format

$ pg_ctl –D data start –w

waiting for server to start....FATAL: could not open log file

"/var/postgresql-2017-02-11_131642.log": Permission denied

 stopped waiting

pg_ctl: could not start server

Examine the log output.

2017-02-11 13:18:55.935 JST,,,15302,,57ede7af.3bc6,2,,2017-02-11 13:18:55

JST,,0,LOG,00000,"database system is ready to accept connections",,,,,,,,,""

2017-02-11 13:18:55.937 JST,,,15308,,57ede7af.3bcc,1,,2017-02-11 13:18:55

JST,,0,LOG,00000,"autovacuum launcher started",,,,,,,,,""

124

© 2013-2017 Hewlett-Packard Enterprise.

If the file extension that is specified in the parameter log_filename is ".log", the log file whose

extension is changed to ".csv" is created. The file with the extension of ".log" will also be created at

the same, but only the part of the contents are output.

□ Output to SYSLOG

Specifying "syslog" to a parameter log_destination, log data will be forwarded to syslog of the local

host. However, a log file in which a few lines are recorded is also created.

Example 103 Information that has been transferred to the SYSLOG

Table 47 Parameters related to the SYSLOG output

Parameter Description Default value

log_destination Enable SYSLOG transfer by setting to syslog stderr

syslog_facility SYSLOG facility LOCAL0

syslog_ident Application name that is output to the log postgres

syslog_sequence_numbers Add a sequence number to the SYSLOG message on

syslog_split_messages Split long SYSLOG messages per 900 bytes on

 In the output log of SYSLOG, process ID of the log output process is written after the name specified

in the parameter syslog_ident.

3.10.3 Log Rotation
When pg_rotate_logfile function is executed, or SIGUSR1 signal is sent to logger process, log

rotation is performed. However, if a new file cannot be created, for example parameter log_filename

does not contain time information, log rotation will not be performed.

□ Specification of pg_rotate_logfile function

Only users with superuser privileges can perform this function. When a general user executes it,

following message will be output.

Feb 11 13:21:04 rel71-2 postgres[15328]: [4-1] LOG: MultiXact member wraparound

protections are now enabled

Feb 11 13:21:04 rel71-2 postgres[15325]: [3-1] LOG: database system is ready

to accept connections

Feb 11 13:21:04 rel71-2 postgres[15332]: [3-1] LOG: autovacuum launcher started

125

© 2013-2017 Hewlett-Packard Enterprise.

Example 104 Error Message

This function returns true when logging_collector parameter is set to "on" (= logger process has been

started). If logging_collector parameter is "off", the execution of the function succeeds, but the

following message is output and the function returns false.

Example 105 Error Message

□ Log file deletion during output

When the log currently in use is deleted, a new log file will not be automatically re-created. A new

log file can be created by forcing a rotation.

3.10.4 Contents of the log
In the default configuration log, the string that indicates the category of the log is output at the

beginning, followed by the recording log contents. Strings shown in the category are as follows.

Table 48 Categories of error log

Category Contents

DEBUG: Message for developers

INFO: Explicit detail information by the user (VACUUM VERBOSE, etc.)

NOTICE: Auxiliary information to the user, such as truncation of long identifiers

WARNING: Warning to the user, such as COMMIT execution outside the transaction

ERROR: Execution error of command, etc.

LOG: The message for administrators, such as activities of the checkpoint

FATAL: Error with the end of the session etc.

PANIC: Stop instances error or the end of all sessions error, etc.

??? Unknown message. It is not output.

In the standard configuration log, log output time, user name, database name, etc., are not output at

all. It is insufficient to use as a purpose of the audit. In order to output these information to log, specify

the parameter log_line_prefix. You can specify the following character.

ERROR: must be superuser to rotate log files

WARNING: rotation not possible because log collection not active

126

© 2013-2017 Hewlett-Packard Enterprise.

Table 49 String that can be specified as a parameter log_line_prefix

String Description

%a Application name (set by SET application_name)

%u Connection user name

%d Connection database name

%r Remote host name and port number (on local connection, [local])

%h Remote host name

%p Process ID

%t Time stamp, excluding the millisecond

%m Time stamp of including milliseconds

%i Command name (INSERT, SELECT, etc.)

%e SQLSTATE error code

%c Session ID

%l Session line number

%s Session start time

%v Virtual transaction ID

%x Transaction ID

%q Stop the output after this scape in the non-session processes

%% % character

%n Timestamp that have been expressed as a decimal number.

3.10.5 Encoding of log file
To output an error message in the character code of non-standard, you need to specify the "--enable-

nls=yes" to the configure command before the PostgreSQL installation. This parameter is not specified

by default, rpm file of the community edition will contain the binary, which is specify this parameter.

PostgreSQL settings currently in use can be found in pg_config command.

Example 106 Display of configure settings using a pg_config command

Character code string that is output to the log file is different in the three parts of the following. The

following example is acquired by PostgreSQL you specify the "--enable-nls=yes".

$ pg_config | grep CONFIGURE

CONFIGURE = '--enable-nls=yes'

$

127

© 2013-2017 Hewlett-Packard Enterprise.

□ Log on at instance startup / shutdown

Log of pg_ctl command is output in the OS locale specified when the command is executed (the LANG

environment variable, etc.).

Example 107 Instance startup log (depends on the environment variable LANG)

□ Error message

Error messages are output in the encoding specified in the parameter lc_message in locale enabled

database.

Example 108 Error message (depends on the parameter lc_message)

□ SQL statement

Encoding of the SQL statements that are output by specifying the parameter log_statement does not

depend on the client-side configuration, it is determined by the encoding of the destination database.

For this reason, in an environment where multiple database with a different encoding are created, the

character code of the SQL statement output to the log will be mixed.

In the following figure, A SQL statement is executed to the Japanese EUC (EUC_JP) database and

UTF-8 database. Parameter client_encoding is set to "SJIS", so SQL statement is sent in Shift_JIS. As

the parameters log_statement is specified to "all", executed SQL statement is recorded in the log.

Recorded SQL statements are converted into UTF8 or Japanese EUC respectively, and they are mixed

in the interior of the log file.

LOG: データベースシステムは 2015-11-11 12:30:26 JST にシャットダウンしました

LOG: MultiXact member wraparound protections are now enabled

LOG: データベースシステムの接続受付準備が整いました。

LOG: 自動バキュームランチャプロセス

ERROR: リレーション"data1"は存在しません(文字位置 15)

ステートメント: select * from data1;

ERROR: リレーション"data1"は存在しません

行 1: select * from data1;

128

© 2013-2017 Hewlett-Packard Enterprise.

Figure 10 Encoding the log

Instance（parameter log_statement=all）

Database
Encoding
UTF8

WHERE c1='UTF-8'

client_encoding='SJIS'

Log File

UTF8 Log

Database
Encoding
EUCJP

EUC_JP Log

WHERE c1='EUC_JP'

129

© 2013-2017 Hewlett-Packard Enterprise.

4. Trouble Shooting

4.1 File deletion before startup instance

4.1.1 Deleted pg_control
An instance cannot start an instance in the case that pg_control file does not exist.

Example 109 Error log instance startup

In order to recover the pg_control file, restore the pg_control file from a backup, and then re-create

the WAL file with specifying the -x option to pg_resetxlog command. If the instance was terminated

abnormally, specify -f option also at the same time. Instance cannot start in case that pg_control file is

only restored.

Example 110 Instance startup error when pg_control restore only

About the transaction ID specified in the -x option of pg_resetxlog command, please refer to the

manual.

4.1.2 Deleted WAL file
 This section describes the operation when the WAL file is deleted.

□ When all WAL file has been deleted

If an instance is successful, regardless of the case of abnormal termination, if the entire WAL file has

been deleted, Instance cannot start under the condition. Execute pg_resetxlog command to re-create

the WAL file. In case of immediately after an abnormal instance termination, specify -f option to

pg_resetxlog command to create WAL files forcibly.

postgres: could not find the database system

Expected to find it in the directory "/usr/local/pgsql/data",

but could not open file "/usr/local/pgsql/data/global/pg_control": No

such file or directory

LOG: invalid primary checkpoint record

LOG: invalid secondary checkpoint record

PANIC: could not locate a valid checkpoint record

LOG: startup process (PID 12947) was terminated by signal 6: Aborted

LOG: aborting startup due to startup process failure

130

© 2013-2017 Hewlett-Packard Enterprise.

Example 111 Startup failure log due to missing WAL

□ After instance abnormal termination, when deleting latest WAL file

If the instance is abnormally terminated, and up-to-date of the WAL file has been deleted, the log file

will be an error, but the instance will start normally. Crash recovery is not only run halfway, but nothing

is output to the log.

Example 112 Startup log of when the latest WAL file has been deleted

4.1.3 Behavior on data file deletion (Normal instance stop)
The data file of which a table is composed was eliminated after a normal shutdown of an instance.

Behavior after an instance restart was verified.

LOG: could not open file "pg_xlog/000000010000000000000002" (log file

0, segment 2): No such file or directory

LOG: invalid primary checkpoint record

LOG: could not open file "pg_xlog/000000010000000000000002" (log file

0, segment 2): No such file or directory

LOG: invalid secondary checkpoint record

PANIC: could not locate a valid checkpoint record

LOG: startup process (PID 27972) was terminated by signal 6: Aborted

LOG: aborting startup due to startup process failure

LOG: database system was interrupted; last known up at 2017-02-11 12:07:16 JST

LOG: database system was not properly shut down; automatic recovery in progress

LOG: redo starts at 0/2000B98

FATAL: the database system is starting up

FATAL: the database system is starting up

LOG: redo done at 0/4FFFF78

LOG: last completed transaction was at log time 2017-02-11 12:08:22.592264+09

FATAL: the database system is starting up

LOG: MultiXact member wraparound protections are now enabled

LOG: database system is ready to accept connections

LOG: autovacuum launcher started

131

© 2013-2017 Hewlett-Packard Enterprise.

Figure 11 Operation of the data file deletion

□ Execution results

Instance started successfully. Error (ERROR category) occurred on the deleted table when accessing

with the SELECT statement. Instance or session are not affected.

□ Output log

Logs are not output at the time of instance startup. At the time of SELECT statement execution,

following log has been output.

Example 113 Log output on accessing the deleted table

4.1.4 Behavior of data file deletion (Instance Crash / No data changed)
The behavior in case of instance crash during running was verified. This is the behavior in case that

the data file of the table, which is not modified from the last checkpoint, is deleted. This is the

supposition that the database server is terminated abnormally due to OS panic and the file is deleted

by fsck command.

LOG: database system is ready to accept connections

ERROR: could not open file "base/16385/16392": No such file or directory

STATEMENT: SELECT COUNT(*) FROM backup1 ;

Table

SELECT rm file
pg_ctl stop pg_ctl start

t

Instance

132

© 2013-2017 Hewlett-Packard Enterprise.

 Figure 12 Operation of the data file deletion

□ Execution results

Instance started successfully. Error (ERROR category) occurred on the deleted table when accessing

with the SELECT statement. Instance of session Instance or sessions are not affected.

□ Outputted log

Crash recovery is logged at instance startup. At the time of SELECT statement execution, following

log has been output.

Example 114 Log at the time of the instance startup

Example 115 Log at the time of the SELECT statement

LOG: database system was interrupted; last known up at 2017-02-11 14:59:05 JST

LOG: database system was not properly shut down; automatic recovery in progress

LOG: redo starts at 3/A000098

LOG: invalid record length at 3/CA7AC28

LOG: redo done at 3/CA79988

FATAL: the database system is starting up

LOG: MultiXact member wraparound protections are now enabled

LOG: database system is ready to accept connections

ERROR: could not open file "base/16385/16601": No such file or directory

STATEMENT: SELECT * FROM data1 ;

crash

Table

pg_ctl start

t

rm file SELECT

Instance

133

© 2013-2017 Hewlett-Packard Enterprise.

4.1.5 Behavior of data file deletion (Instance Crash / Updated)
The behavior in case of instance crash during running was verified. This is the behavior in case that

the data file of the table, which was updated after last checkpoint, and whose transaction information

was recorded in WAL, is deleted. This is the supposition that the database server is terminated

abnormally due to OS panic, and the file is deleted by fsck command.

Figure 13 Operation of the data file deletion

□ Execute result

Instance started successfully. Error did not occur when accessing in the SELECT statement. However,

the information other than the updated block is lost. Instance or sessions are not affected

□ Outputted log

Crash recovery is logged at instance startup. However, the log regarding a loss of the data is not

output.

Example 116 Startup log

LOG: database system was interrupted; last known up at 2017-02-11 15:03:32

JST

LOG: database system was not properly shut down; automatic recovery in

progress

LOG: redo starts at 3/CA7AC98

LOG: invalid record length at 3/CD51DB8

LOG: redo done at 3/CD51D90

LOG: last completed transaction was at log time 2017-02-11 11:35:11.928603+09

LOG: MultiXact member wraparound protections are now enabled

LOG: database system is ready to accept connections

SELECT

t

Table

crash pg_ctl start
rm file

Instance

UPDATE

134

© 2013-2017 Hewlett-Packard Enterprise.

4.1.6 Other files
The behaviors in case of the deletion of other files are verified.

□ Behavior of Visibility Map (VM) / Free Space Map (FSM) file deletion

Error does not occur on VM files, FSM file deletion, and SQL statement for the target table succeeds.

These files are re-created on the next VACUUM.

□ Behavior at the time of pg_filenode.map file deletion

When pg_filenode.map file is deleted, it becomes impossible to mapping of the system catalog and

the file name, and then cannot use the database.

Example 117 Log on pg_filenode.map deletion

□ Behavior at the time of PG_VERSION file deletion

When PG_VERSION file is deleted, the directory cannot be recognized as the directory for

PostgreSQL database.

Example 118 Log on PG_VERSION deletion

FATAL: "base/16385" is not a valid data directory

DETAIL: File "base/16385/PG_VERSION" is missing.

FATAL: could not open relation mapping file

"base/16385/pg_filenode.map": No such file or directory

135

© 2013-2017 Hewlett-Packard Enterprise.

4.2 Delete files in the instance running
I verified the behavior when a file is deleted during instance running

4.2.1 Delete pg_control
If the instance cannot access to pg_control during operation, PANIC occurs and instance stops.

Detection is done at a checkpoint occurrence.

Example 119 PANIC log on checkpoint occurrence

4.2.2 Delete WAL
□ Delete of WAL during instance running (re-creation available)

When it is detected that the WAL file has been deleted, WAL file is automatically re-created. It was

verified by deleting the WAL files in the instance startup state.

□ Delete of WAL during instance running (re-creation not available)

When it is detected that the WAL file has been deleted, and found not to be recreated, PANIC occurs

and instance stops. It was verified by removing the WAL files and setting the pg_xlog directory in

write-protected state.

PANIC: could not open control file "global/pg_control": Permission denied

LOG: checkpointer process (PID 3806) was terminated by signal 6: Aborted

LOG: terminating any other active server processes

WARNING: terminating connection because of crash of another server process

DETAIL: The postmaster has commanded this server process to roll back the

current transaction and exit, because another server process exited abnormally

and possibly corrupted shared memory.

HINT: In a moment you should be able to reconnect to the database and repeat

your command.

136

© 2013-2017 Hewlett-Packard Enterprise.

Example 120 Log from the running state instance to the time of WAL inaccessible

PANIC: could not open file "pg_xlog/000000010000000300000026": Permission

denied

LOG: WAL writer process (PID 2518) was terminated by signal 6: Aborted

LOG: terminating any other active server processes

WARNING: terminating connection because of crash of another server process

DETAIL: The postmaster has commanded this server process to roll back the

current transaction and exit, because another server process exited abnormally

and possibly corrupted shared memory.

HINT: In a moment you should be able to reconnect to the database and repeat

your command.

LOG: all server processes terminated; reinitializing

LOG: database system was interrupted; last known up at 2017-02-11 10:43:58 JST

LOG: creating missing WAL directory "pg_xlog/archive_status"

FATAL: could not create missing directory "pg_xlog/archive_status": Permission

denied

LOG: startup process (PID 2624) exited with exit code 1

LOG: aborting startup due to startup process failure

137

© 2013-2017 Hewlett-Packard Enterprise.

4.3 Process Failure

4.3.1 Behavior of the process abnormal termination
If the backend process other than postmaster terminated abnormally, postmaster process detect it and

restart them. Some of the process might restart at the same time. The postgres process that handles the

SQL statement from the client will not be restarted because the sessions between client and instance

are closed with the abnormal termination.

Table 50 Behavior of process on abnormal termination

Process Behavior

postmaster9 The entire instance is terminated abnormally; shared memory is not deleted

logger It will be restarted by the postmaster

writer It is restarted by postmaster simultaneously with wal writer and autovacuum

launcher. All of the postgres process halts

wal writer It is restarted by postmaster simultaneously with writer and autovacuum

launcher. All of the postgres process halts

autovacuum

launcher

It's restarted by postmaster simultaneously with writer and wal writer

stats collector It will be restarted by the postmaster

archiver It will be restarted by the postmaster

checkpointer It will be restarted by the postmaster. All of the postgres process halts

postgres It will not be restarted

wal sender It will be restarted by the postmaster. Wal receiver process of slave instance will

also be restarted. All of the postgres process halts

wal receiver It will be restarted by the postmaster. Wal sender process of master instance will

also be restarted. Postgres process of slave instance is shut down

startup process The entire slave instance is terminated

The above behavior is the operation when the value of the parameter restart_after_crash is set to "on"

the default value. If this parameter is set to "off", the entire instance will abort when the backend

process stops.

9 If you stop the postmaster by sending a KILL signal, shared memory and semaphores are not deleted.

138

© 2013-2017 Hewlett-Packard Enterprise.

4.3.2 Behavior of the transaction at the process abnormal termination.
When the "stats collector", "logger" and "archiver" other than the process is abnormal termination,

all of the postgres processes that were connected to the client will stop. Therefore, transaction in

progress will be discarded. In the replication environment, process failure of the slave instance, does

not affect the operation of the master instance.

139

© 2013-2017 Hewlett-Packard Enterprise.

4.4 Other failure

4.4.1 Crash recovery
When an instance is abnormally terminated, the information of the update transaction is stored only

WAL because the checkpoint has not been completed. When instance restarts, crash recovery

processing which eliminates the inconsistency between data files and WAL is automatically executed.

Crash recovery will begin from reading the pg_control file. If the status of the instance is

DB_SHUTDOWNED (1), crash recovery will not be done because the instance shutdown successfully.

Other status means that instance terminated abnormally therefore crash recovery is necessary.

Below I will write the treatment of crash recovery. Following is brief explanation of the crash

recovery process.

1. Check the location of the checkpoint. WAL up to the checkpoint are guaranteed to be written

to the data file, therefore recovering is not necessary

2. Read the transaction information that occurred after the last checkpoint from WAL

3. Since the first update after the checkpoint wrote entire block to WAL, recover the block

(parameter full_page_writes)

4. Apply the information of the update transaction from WAL

5. Re-run the update transaction up to the latest WAL

4.4.2 Instance abnormal termination during online backup
PostgreSQL online backups will be conducted in the following procedure.

1. Start an instance in the archive log mode

2. Execute pg_start_backup function

3. Copy the database cluster files (by the OS command)

4. Execute pg_stop_backup function

Among the procedures above, the behavior in case that an instance terminates abnormally during

procedure 3 was inspected. Instance termination was done by sending KILL signal to postmaster.

140

© 2013-2017 Hewlett-Packard Enterprise.

Example 121 Instance abnormal termination in online backup

As postmaster.pid file has not been deleted, warnings have been issued, but the restart was successful.

From the fact that an error "a backup is not in progress" returns after executing the function

pg_stop_backup, we can see that the backup mode is cleared by the restart of the instance.

4.4.3 Failure of the archiving
When the WAL file is entirely written, the command specified in the parameter archive_command

will be performed using the "system (3)" function (Linux / Windows both) (pgarch_archiveXlog

function in src/backend/postmaster/pgarch.c).

□ Re-run of the archiving process

When the "system" function returns a value other than 0, it is considered as the archive process failure.

If all three retries fail, archiver process waits a maximum of 60 seconds, and archiver process retry

three time.

postgres=# SELECT pg_start_backup('label') ;

pg_start_backup

 0/5000020

(1 row)

$ ps -ef | grep postgres

postgres 6016 1 0 12:46 pts/1 00:00:00 /usr/local/pgsql/bin/postgres

$ kill -KILL 6016

$ pg_ctl -D data start -w

pg_ctl: another server might be running; trying to start server anyway

server starting

postgres=# SELECT pg_stop_backup() ;

ERROR: a backup is not in progress

141

© 2013-2017 Hewlett-Packard Enterprise.

Figure 14 Re-run of the archiving process

The number of times of the archive processing failure can be checked in pg_stat_archiver catalog

(from PostgreSQL 9.4).

□ Failure log of the archiving process

When the archive process fails, the log is output. The example below shows an error in case that

"cp %p /arch/%f" is specified in the parameter archive_command and there is no writer access

permission on the archive log output directory. Cp command stopped with status 1. LOG level error

reports three times, and finally WARNING level error occurs.

Wait for 60 seconds (maximum)

 The number of retry is unlimited

1 second wait

 Up to 3 times

142

© 2013-2017 Hewlett-Packard Enterprise.

Example 122 Archive processing failure log

Error messages during the archive process failure are as follows.

Table 51 Archive processing failure log

Error Level Error Message Description

WARNING archive_mode enabled, yet

archive_command is not set

On archive log mode, but the

configuration parameter

archive_command is not specified.

WARNING archiving transaction log file \"%s\"

failed too many times, will try again later

For all three retries fail, it will

temporarily wait.

FATAL |

LOG

archive command failed with exit

code %d

Archive command exits with a failure

status

FATAL

archive command was terminated by

exception

Archive command received an exception

(Windows), and failed

FATAL archive command was terminated by

signal %d

Archive command received an exception

(other than Windows), and failed

FATAL |

LOG

archive command exited with

unrecognized status %d

Archive command exits with unknown

error

cp: accessing `/arch/000000010000000000000070': Permission denied

LOG: archive command failed with exit code 1

DETAIL: The failed archive command was: cp

pg_xlog/000000010000000000000070 /arch/000000010000000000000070

cp: accessing `/arch/000000010000000000000070': Permission denied

LOG: archive command failed with exit code 1

DETAIL: The failed archive command was: cp

pg_xlog/000000010000000000000070 /arch/000000010000000000000070

cp: accessing `/arch/000000010000000000000070': Permission denied

LOG: archive command failed with exit code 1

DETAIL: The failed archive command was: cp

pg_xlog/000000010000000000000070 /arch/000000010000000000000070

WARNING: archiving transaction log file "000000010000000000000070"

failed too many times, will try again later

143

© 2013-2017 Hewlett-Packard Enterprise.

As for error level selection (FATAL or LOG), when WIFSIGNALED macro exceeds 128 or

WEXITSTATUS macro becomes true, the level becomes FATAL. Otherwise, the error level is LOG.

□ WAL with archive failure

When the archive process fails, WAL file for which the process fails is not reused, and new WAL file

will be added. For this reason, when the archive process continues to fail, a large number of WAL files

leave below pg_xlog directory.

144

© 2013-2017 Hewlett-Packard Enterprise.

5. Performance Related Information

5.1 Automatic statistical information collection

5.1.1 Timing
Collection of statistics will be executed at the same time as automatic VACUUM. From autovacuum

launcher process, autovacuum worker process that performs the actual processing at the interval

specified in the parameter autovacuum_naptime (default 1min) is launched.

5.1.2 Conditions
Collection of statistical information is determined by comparing the value acquired by the following

equation and the number of tuples that have been updated from the previous acquisition of the statistics.

The number of updated tuples is the sum of the tuples that were affected by the UPDATE / DELETE

/ INSERT statement. Check of the condition is performed by relation_needs_vacanalyze function in

the source code (src/backend/postmaster/autovacuum.c).

Formula 3 Autovacuum Threshold

The meaning of the above equation is as follows:

 autovacuum_analyze_threshold

The value of the parameter autovacuum_analyze_threshold (default value is 50), or the value

of the autovacuum_analyze_threshold attribute of the table

 autovacuum_analyze_scale_factor

The value of the parameter autovacuum_analyze_scale_factor (default value 0.1 = 10%), or

the value of the autovacuum_analyze_scale_factor attributes of the table

 reltuples

This is the number of valid tuples of the table when the statistics information acquired last

time.

5.1.3 The number of sample tuples
Collection of statistical information is handled by sampling. Number of the tuples of sampling does

not depend on the number of the tuples or the blocks of the table. Corresponding to the setting of the

target table for which (or within automatic VACUUM) ANALYZE statement will be executed, it is

Threshold = autovacuum_analyze_threshold +

autovacuum_analyze_scale_factor * reltuples

145

© 2013-2017 Hewlett-Packard Enterprise.

determined by the following formula.

Formula 4 Number of sampling tuples

For the default value for STATSITICS of each column, parameter default_statistics_target is used.

When the number of active tuples in the table is less or equal than this value all the active tuples in the

table become the target of the sampling. This formula is defined in std_typanalyze function of source

code (src/backend/commands/analyze.c). The following is a comment about the details to determine

this formula.

Example 123 Comment in the source code:

Table 52 Data of calculation formula

Item Description

r The number of sample tuples necessary to acquire

k The size of the histogram

(Parameter default_statistics_target or column STATISTICS)

n Number of tuples (constant fixed to 1,000,000)

gamma Error probability (constant fixed to 0.01)

f The maximum relative error (constant fixed to 0.5)

The following choice of minrows is based on the paper "Random sampling for

histogram construction: how much is enough?" by Surajit Chaudhuri, Rajeev Motwani

and Vivek Narasayya, in Proceedings of ACM SIGMOD International Conference on

Management of Data, 1998, Pages 436-447. Their Corollary 1 to Theorem 5 says

that for table size n, histogram size k, maximum relative error in bin size f,

and error probability gamma, the minimum random sample size is

 r = 4 * k * ln(2*n/gamma) / f^2

Taking f = 0.5, gamma = 0.01, n = 10^6 rows, we obtain

 r = 305.82 * k

Note that because of the log function, the dependence on n is quite weak; even

at n = 10^12, a 300*k sample gives <= 0.66 bin size error with probability 0.99.

So there's no real need to scale for n, which is a good thing because we don't

necessarily know it at this point.

Number of sampling tuples = MAX(column STATISTICS value) * 300

146

© 2013-2017 Hewlett-Packard Enterprise.

To output the number of sample tuples that are acquired by the ANALYZE statement, either

execute ANALYZE VERBOSE statement or set the parameters log_min_messages to DEBUG2. The

following example is a log of executing "ANALYZE VARBOSE data1" statement. To the table,

which stores about 100,000 tuples, 30,000 tuples have been sampled.

Example 124 Server log of statistics collection

Example 125 The output of the ANALYZE VERBOSE statement

When ANALYZE VERBOSE statement is executed, not only the number of sampling tuples, but

also the number of the pages and the number of active tuples, the number of the dead tuples, the

number of tuples of the entire expected table will be output.

□ Change of STATISTICS value of the column

Column STATISTICS settings will be executed in the ALTER TABLE ALTER COLUMN

statement. The upper limit of the STATISTICS setting is 10,000.

DEBUG: analyzing "public.data1"

DEBUG: "data1": scanned 542 of 542 pages, containing 100100 live rows

and 0 dead rows; 30000 rows in sample, 100000 estimated total rows

postgres=> ANALYZE VERBOSE stat1 ;

INFO: analyzing "public.stat1"

INFO: "stat1": scanned 542 of 542 pages, containing 100100 live rows

and 0 dead rows; 30000 rows in sample, 100100 estimated total rows

ANALYZE

postgres=>

147

© 2013-2017 Hewlett-Packard Enterprise.

Example 126 Column STATISTICS setting and confirmation

5.1.4 Information collected as statistics
Statistics that are collected by the execution of ANALYZE statement or automatic VACUUM, are

stored in the pg_statistic catalog and pg_class catalog. For pg_statistic catalog’s format is difficult to

use information is normally searched from pg_stats catalog. The tuples in a table, where ANALYZE

statement (including automatic VACUUM) is not executed, are not included in this catalog.

Table 53 pg_stats catalog

Attribute Description

schemaname schema name

tablename table name

attname attribute name

inherited If true, including the information of the inheritance table

null_frac Percentage of NULL row

avg_width Average byte length of the column

n_distinct Estimated unique tuple number (positive or negative)

most_common_vals Most frequent value

most_common_freqs Rate of most frequent value

histogram_bounds Percentage of the histogram appearance

correlation Correlation between physical layout and logical placement

most_common_elems Most value is large column value (non-scalar value)

most_common_elem_freqs The proportion of most value often column value (non-scalar value)

elem_count_histogram Percentage of the histogram appearance (non-scalar value)

postgres=> ALTER TABLE data1 ALTER COLUMN col1 SET STATISTICS 200 ;

ALTER TABLE

postgres=> \d+ data1

Column | Type | Modifiers | Storage | Stats target | Desc

--------+------------------------+-----------+----------+--------------+-----

 c1 | numeric | | main | 200 |

 c2 | character varying(100) | | extended | |

Has OIDs: no

148

© 2013-2017 Hewlett-Packard Enterprise.

Table 54 Statistics of pg_class catalog

Attribute Description

reltuples The number of tuples included in the table

relpages Number of pages of the table

□ N_distinct statistics

N_distinct column of pg_stats catalog shows the number of the unique values in the table. This

value may become a negative value.

 As a result of sampling, if the column value is determined to be unique, n_distinct value is

specified -1.0.

 If the number of the unique values is considered to be more than 10% of the total number of

tuples, the following calculations are specified.

Formula 5 Number of Unique Value

 Otherwise, the calculation formula in the comment below is used as an estimated value.

Example 127 comments indicating the n_distinct formula (src/backend/commands/analyze.c)

The value of n_distinct statistics can be overwritten by the ALTER TABLE table_name ALTER

column_name SET statement, but the value on the pg_stats catalogs does not change until the next

ANALYZE statement is executed.

-1 * (Estimate of the unique value / Total number of tuples)

Estimate the number of distinct values using the estimator

proposed by Haas and Stokes in IBM Research Report RJ 10025:

 n*d / (n - f1 + f1*n/N)

where f1 is the number of distinct values that occurred

exactly once in our sample of n rows (from a total of N),

and d is the total number of distinct values in the sample.

This is their Duj1 estimator; the other estimators they

recommend are considerably more complex, and are numerically

very unstable when n is much smaller than N.

Overwidth values are assumed to have been distinct.

149

© 2013-2017 Hewlett-Packard Enterprise.

For the attributes of column, n_distinct and n_distinct_inherited can be specified.

N_distinct_inherited is the column information of inherited table, but you can change it even if you

are not using the inheritance table. Column attributes that have been changed in the ALTER TABLE

statement can be confirmed by attoptions column of pg_attribute catalog.

□ Most_common_vals statistics

Most_common_vals Statistics (MCV) is an array of the column value which appears the most

frequently. Maximum number of elements in the array is default_statistics_target parameter values

(default 100), or STATISTICS value of the column, if specified. Thus, when the parameter

default_statistics_target is expanded, the number of the buckets in histogram, the number of the

sampling tuples, and the number of the elements in the MCV are also expanded.

150

© 2013-2017 Hewlett-Packard Enterprise.

5.1.5 Destination of the statistics
In addition to the per-object statistics, various statistical information is automatically collected in

PostgreSQL. They can be checked by pg_stat_ * catalogs10 and pg_statio_* catalogs.

Table 55 Statistics Information Catalog

Catalog name Contents

pg_stat_activity Current activity of that process

pg_stat_{all|sys|user}_indexes Statistics for the index

pg_stat_{all|sys|user}_tables Statistics for the table

pg_stat_archiver Statistical information about the archive log

pg_stat_bgwriter Statistical information about the writer process

pg_stat_database Statistics for each database

pg_stat_database_conflicts Competitive information with the standby database

pg_statio_{all|sys|user}_sequences I/O statistics on sequence object

pg_statio_{all|sys|user}_tables I/O statistics on the table

pg_statio_{all|sys|user}_indexes I/O statistics on the index

pg_statistic I/O statistics on the all objects

pg_stat_replication Statistical information about the replication

pg_stats Formatting catalog of pg_statistic

pg_stat_ssl SSL usage of client

pg_stat_user_functions Statistics for the functions

pg_stat_xact_{all|sys|user}_tables Updated statistical information for the table

pg_stat_xact_user_functions Updated statistics for function

pg_stat_wal_receiver Slave information of the replication environment

pg_stat_progress_vacuum VACUUM execution status

 The real content of the statistics consists of global.stat file where statistics of whole instance is stored,

and db_{OID}.stat file created for each database. At the instance startup, these files are moved from

{PGDATA}/pg_stat directory to the directory specified by the parameter stats_temp_directory

(default: pg_stat_tmp). It is returned to the pg_stat directory at the instance shutdown.

If the read of the statistics is bottleneck, we can make it faster by specifying the parameter

stats_temp_directory to a directory on a fast storage.

10 Online manual is https://www.postgresql.org/docs/9.6/static/monitoring-stats.html

https://www.postgresql.org/docs/9.6/static/monitoring-stats.html

151

© 2013-2017 Hewlett-Packard Enterprise.

5.2 Automatic VACUUM

5.2.1 Interval
Automatic VACUUM is performed by the autovacuum worker process which is activated by

autovacuum launcher process. The activation intervals of autovacuum worker is decided by the

parameter autovacuum_naptime (default: 1min).

5.2.2 Conditions
Automatic VACUUM is determined by comparing the value acquired by the following equation, and

the number of the tuples that are updated and become unnecessary. Though the number of the

unnecessary tuples essentially matches the number of the tuples updated by the UPDATE / DELETE

statement, it may not be counted in case of multiple UPDATE for the same tuple. This is assumed to

be caused by re-use using HOT. Condition check is done in relation_needs_vacanalyze function in the

source code (src/backend/postmaster/autovacuum.c).

Formula 6 Autovacuum Threshold

The meaning of the above equation is as follows:

 autovacuum_vacuum_threshold

The value of the parameter autovacuum_vacuum_threshold (default value is 50), or the value

of the autovacuum_vacuum_threshold attribute of the table.

 autovacuum_vacuum_scale_factor

The value of the parameter autovacuum_analyze_scale_factor (default: 0.2 = 20%), or the

value of the autovacuum_analyze_scale_factor attributes of the table.

 reltuples

This is the number of the valid tuples when the statistics where acquired last time of the time.

It can be found in pg_class catalog reltuples column.

5.2.3 Autovacuum worker process startup
Actual VACUUM processing is executed by the autovacuum worker process that is regularly started.

Autovacuum worker process is a child process of the postmaster process. The tables which need

VACUUM are checked at the intervals of "autovacuum_naptime parameter / number of the data

changed database", and when the table which contains the unnecessary tuples beyond the threshold

Threshold = autovacuum_vacuum_threshold +

autovacuum_vacuum_scale_factor * reltuples

152

© 2013-2017 Hewlett-Packard Enterprise.

described above is found, autovacuum worker process is activated. Autovacuum worker process stops

when it completes the VACUUM processing in the target database.

If the tables to be performed VACUUM exists in multiple databases, autovacuum worker processes

start for each database. If there still remains VACUUM target table at the next check interval,

VACUUM process is performed by starting a new autovacuum worker process.

The maximum number of autovacuum worker process is limited by the parameter

autovacuum_max_workers (default: 3). The log is not output even if it reaches the maximum value.

Execution status of automatic VCAUUM can be found in the pg_stat_progress_vacuum catalog.

However, you can search the records only during VACUUM processing execution.

Example 128 Retrieval of pg_stat_progress_vacuum catalog

5.2.4 Amount of usable memory
The parameter that controls the size calculation of the memory area to be used for the automatic

VACUUM processing is autovacuum_work_mem. The value specified by this parameter is not always

used, but the calculated value based on a parameter value is used.

The default value for this parameter is -1. In case of default value, the value of the parameter

maintenance_work_mem is used. It is not documented in the manual, but the lower limit value for this

parameter is 1024 (= 1MB). If the value other than -1 and lessa than 1MB is specified, the parameter

value is set to 1MB.

postgres=# SELECT * FROM pg_stat_progress_vacuum ;

-[RECORD 1]------+--------------

pid | 3184

datid | 16385

datname | demodb

relid | 16398

phase | scanning heap

heap_blks_total | 10052

heap_blks_scanned | 2670

heap_blks_vacuumed | 2669

index_vacuum_count | 0

max_dead_tuples | 291

num_dead_tuples | 185

153

© 2013-2017 Hewlett-Packard Enterprise.

5.3 Execution Plan

5.3.1 EXPLAIN statement
 In order to view the execution plan of PostgreSQL, use the EXPLAIN statement. By specifying

ANALYZE clause to EXPLAIN statement, the estimate statistics calculated at runtime planning and

the result statistics of the SQL statements are displayed side by side.

Example 129 Execution of EXPLAIN statement

Table 56 Example of the output result of the EXPLAIN statement

Output Description Note

Index Scan using The object name of the execution plan and the target

cost The calculated cost (details will be described later)

rows Estimated number of tuples

width Estimated typical output number of bytes (width of 1 tuple)

actual time The actual execution time (details will be described later)

rows The number of output tuples

loops Number of repetitions of the process

Index Cond: Indicate that it has performed the partial search of the index

Planning time: Expected time (ms) Added 9.4

Execution time: Total execution time (ms)

The EXPLAIN statement does not display which planner, the dynamic programming (DP) or the

genetic optimization (GEQO), was used to perform planning. And the execution plan of SQL

statements that are executed within stored procedures written in PL/pgSQL, etc. is not displayed.

postgres=> EXPLAIN ANALYZE SELECT * FROM data1 WHERE c1 BETWEEN 1000 AND 2000 ;

 QUERY PLAN

Index Scan using pk_data1 on data1 (cost=0.29..8.31 rows=1 width=11)

(actual time=0.033..0.033 rows=0 loops=1)

 Index Cond: ((c1 >= '1'::numeric) AND (c1 <= '1000'::numeric))

Planning time: 9.849 ms

 Execution time: 1.691 ms

(4 rows)

154

© 2013-2017 Hewlett-Packard Enterprise.

5.3.2 Costs
Cost part displayed with the EXPLAIN statement is the cost required to execute the SQL statement.

Cost is a relative estimate value when the cost to read one page (8 KB) in sequential I/O is defined as

1.0.

Example 130 Cost outputted by EXPLAIN statement

The first number is the start-up cost, and the second number is the total cost. Start-up cost is used in

case of using some of the operators. The total cost should be noted in the tuning.

Table 57 The major execution plan and the default cost

Parameter Description Default Value

seq_page_cost Sequential page read 1.0

cpu_index_tuple_cost Processing of index once 0.005

cpu_operator_cost Calculation once 0.0025

cpu_tuple_cost Operation of one tuple 0.01

random_page_cost Random page read 4.0

parallel_setup_cost Parallel query initial cost 1000

parallel_tuple_cost Tuple cost of parallel query 0.1

Example 131 Display of cost

Calculated value of the cost in the above example is the relpages (1,234) × seq_page_cost (1.0) +

reltuples (89,998) × cpu_tuple_cost (0.01) = 2,133.98.

cost=0.00..142.10

postgres=> EXPLAIN SELECT * FROM data1 ;

 QUERY PLAN

 Seq Scan on data1 (cost=0.00..2133.98 rows=89998 width=41)

(1 row)

postgres=> SELECT reltuples, relpages FROM pg_class WHERE relname='data1' ;

 reltuples | relpages

-----------+----------

 89998 | 1234

(1 row)

155

© 2013-2017 Hewlett-Packard Enterprise.

5.3.3 Execution plan
The execution plan that is output with the EXPLAIN command outputs the following query operators.

This list is searched from the source code of PostgreSQL 9.6.2 (src/backend/commands/explain.c).

Table 58 Execution Plan Operator

Query Operator Behavior Startup Cost

Result Non-table query No

Insert Execution of INSERT statement

Delete Execution of DELETE statement

Update Execution of UPDATE statement

Append Additional processing of data No

Merge Append Merge processing

Recursive Union Recursive Union

BitmapAnd Bit map search AND

BitmapOr Bit map search OR

Nested Loop Nested Loops No

Merge Join Merge Join Yes

Hash Join Hash Join Yes

Seq Scan All cases search No

Sample Scan Sample Scan

Index Scan Index range search No

Index Only Scan Range search of the index only

Bitmap Index Scan Bitmap scan of index

Bitmap Heap Scan Bitmap scan of the heap Yes

Tid Scan TID scan plan No

Subquery Scan Subquery Search No

Function Scan Function scan No

Values Scan Value scan

CTE Scan CTE scan using WITH clause

WorkTable Scan Temporary table search

Foreign Scan External table search

Materialize Subquery Yes

Custom Sacn Custom Scan

Sort Sorting Yes

156

© 2013-2017 Hewlett-Packard Enterprise.

Table 58 Execution Plan (Cont.)

Query Operator Behavior Startup Cost

Group Processing of GROUP BY clause Yes

Aggregate Use of aggregate processing Yes

GroupAggregate Grouping

HashAggregate Use of hash aggregation processing

WindowAgg Window aggregation processing

Unique processing of DISTINCT / UNION clause Yes

SetOp processing of INTERCEPT / EXCEPT clause Yes

HashSetOp Hashing

LockRows Row locking

Limit Processing of LIMIT clause Yes（OFFSET > 0）

Hash Hashing Yes

Parallel Seq Scan Parallel sequential scan

Finalize Aggregate Final consolidation of parallel processing

Gather Aggregation of parallel workers

Partial Aggregate Parallel processing of the aggregate

Partial HashAggregate

Partial GroupAggregate

Single Copy Run in a single process

Below is the description of the typical query operator.

□ Sort

In addition to the explicit specification by ORDER BY clause, it can be performed in the implicit

sort due to Merge Join processing or Unique processing.

□ Index Scan

Find the table from the index. It refers to the full scan of the index if the "Index Cond" execution plan

does not appear.

□ Index Only Scan

To get all the necessary information from the index, it does not to search for the table. However, a

result of referring to the visibility map, it may executor to access the table.

157

© 2013-2017 Hewlett-Packard Enterprise.

□ Bitmap Scan

Use the BitmapOr and BitmapAnd to create a bit map of the entire relationship in memory.

□ Result

This message is displayed when returning the results without accessing the table.

□ Unique

It will eliminate duplicate values. It is used in the processing of DISTIMCT clause or UNION clause.

□ Limit

It is used when the LIMIT clause is specified with the ORDER BY clause.

□ Aggregate

It is used in the GROUP BY clause or aggregate functions. GroupAggregate or HashAggregate might

be used.

□ Append

It is used in the data append processing by UNION (ALL).

□ Nested Loop

It is used in the INNER JOIN and LEFT OUTER JOIN. It scans the external table, and search the

tuples that match the internal table.

□ Merge Join

There are Merge Right Join and Merge In Join. It binds a sorted record set.

□ Hash, Hash Join

Create a hash table, and then compare the two tables. The initial cost for the creation of the hash table

is required.

□ Tid Scan

It is used in the search that specifies Tuple Id (ctid).

□ Function

It is used when a function generates a tuple (SELECT * FROM func (), etc.).

158

© 2013-2017 Hewlett-Packard Enterprise.

□ SetOp

It is used in the processing of EXCEPT ALL clause, INTERSECT clause, INTERSECT ALL clause,

and EXCEPT clause.

Parameters that control the operator planner to create an execution plan to select is as follows. Setting

value of these parameters is turned "on" by default. It is set to "off" these parameters, the operator

specified does not mean that it is completely prohibited. If you specify in the parameter "off", the

execution plan to the startup cost 1.0e10 (10,000,000,000) has been added are compared.

Table 59 Parameters that control the execution plan

Parameter name Description Default Value

enable_bitmapscan Use of bitmap scan on

enable_indexscan Use of index scan on

enable_tidscan Use of TID scan on

enable_seqscan Use of sequential scan on

enable_hashjoin Use of hash join on

enable_mergejoin Use of merge join on

enable_nestloop Use of nested loop join on

enable_hashagg Use of hash aggregate on

enable_material Use of materialization on

enable_sort Use of sort on

In the following example, in an environment where only sequential scan is performed, to set the value

of the parameter enable_seqscan to "off". The initial cost will be larger, but you can see that the

sequential scan (Seq Scan) has been selected.

159

© 2013-2017 Hewlett-Packard Enterprise.

Example 132 Change the parameters and execution plan

5.3.4 Execution time
If a ANALYZE clause is specified to EXPLAIN statement, the actual execution time is output. In the

"actual" part, there are two numbers which indicate time. The first number is the time when the first

tuple is output, and the second number is the total execution time.

Example 133 Display of execution time

5.3.5 Cost estimate of the empty table
When executing the EXPLAIN statement to conduct a search on a table with no tuple the cost item

and rows item show the numbers different from the actual number. Empty table is calculated as 10

blocks, and the system calculates the cost by estimating the maximum number of tuples that can be

stored in 10 blocks.

actual time=0.044..0.578

postgres=> SHOW enable_seqscan ;

 enable_seqscan

 on

(1 row)

postgres=> EXPLAIN SELECT * FROM data1 ;

 QUERY PLAN

--

 Seq Scan on data1 (cost=0.00..7284.27 rows=466327 width=11)

(1 row)

postgres=> SET enable_seqscan = off ;

SET

postgres=> EXPLAIN SELECT * FROM data1 ;

 QUERY PLAN

 Seq Scan on data1 (cost=10000000000.00..10000007284.27 rows=466327 width=11)

(1 row)

160

© 2013-2017 Hewlett-Packard Enterprise.

Example 134 Display of rows and cost for empty table

5.3.6 Disk sort
Sorting process is performed in memory that has been specified by the parameter work_mem.

However, if tuples cannot be stored in working memory, sorting is performed on the storage.

Temporary data for the disk sorting, is created in the pgsql_tmp directory of tablespace where the

database, to which the table belongs, is stored. If the destination of the database is tablespace

pg_default, {PGDATA}/base/pgsql_tmp directory is used; otherwise

{TABLESPACEDIR}/PG_9.6_201608131/pgsql_tmp directory is used. File name that is used for

sorting is "pgsql_tmp{PID}.{9}". {PID} is the backend process ID, and {9} is a unique number that

starts from 0.

Example 135 File for disk sorting

Following is the confirmation method of the disk sorting.

postgres=> CREATE TABLE data1 (c1 NUMERIC, c2 NUMERIC) ;

CREATE TABLE

postgres=> ANALYZE data1 ;

ANALYZE

postgres=> SELECT reltuples, relpages FROM pg_class WHERE relname='data1' ;

 reltuples | relpages

-----------+----------

 0 | 0

(1 row)

postgres=> EXPLAIN SELECT * FROM data1 ;

 QUERY PLAN

 Seq Scan on data1 (cost=0.00..18.60 rows=860 width=64)

(1 row)

postgres=>

$ pwd

/usr/local/pgsql/data/base/pgsql_tmp

$ ls -l

total 34120

-rw------- 1 postgres postgres 34897920 Sep 30 17:02 pgsql_tmp6409.0

161

© 2013-2017 Hewlett-Packard Enterprise.

□ Execution plan

When the execution plan is obtained by EXPLAIN ANALYZE statement, "Sort Method: external

merge" indicating the disk sort or "Sort Method: external sort", and the amount of disk space that is

used is output.

Example 136 Execution plan of disk sort

By the number of tuples for sorting, the method of disk sort is selected Replacement Selection or

Quicksort. When the number of tuples sort object is less than or equal to the specified parameters

replacement_sort_tuples (default value 150000), Replacement Selection will be selected.

□ Parameter trace_sort

Specifying a parameters trace_sort to "on", sort-related event is logged in the log (default: "off").

This parameter causes log output, even during execution of memory sort, therefore it should not be set

in a commercial environment.

postgres=> EXPLAIN ANALYZE SELECT * FROM data1 ORDER BY 1, 2 ;

 QUERY PLAN

--

 Sort (cost=763806.52..767806.84 rows=1600128 width=138)

(actual time=7600.693..9756.909 rows=1600128 loops=1)

 Sort Key: c1, c2

 Sort Method: external merge Disk: 34080kB

 -> Seq Scan on data1 (cost=0.00..24635.28 rows=1600128 width=138)

(actual time=1.239..501.092 rows=1600128 loops=1)

 Total runtime: 9853.630 ms

(5 rows)

162

© 2013-2017 Hewlett-Packard Enterprise.

Example 137 Output log with trace_sort=on (sorted by Replacement Selection)

Example 138 Output log with trace_sort=on (Sorted by Quicksort)

LOG: statement: SELECT * FROM data1 ORDER BY 1;

LOG: begin tuple sort: nkeys = 1, workMem = 4096, randomAccess = f

LOG: numeric_abbrev: cardinality 10049.436974 after 10240 values (10240 rows)

LOG: switching to external sort with 15 tapes: CPU 0.03s/0.01u sec elapsed 0.04

sec

LOG: replacement selection will sort 58253 first run tuples

LOG: performsort starting: CPU 0.99s/0.51u sec elapsed 1.51 sec

LOG: finished incrementally writing only run 1 to tape 0: CPU 1.01s/0.54u sec

elapsed 1.55 sec

LOG: performsort done: CPU 1.01s/0.54u sec elapsed 1.56 sec

LOG: external sort ended, 2687 disk blocks used: CPU 1.50s/0.95u sec elapsed

2.48 sec

LOG: begin tuple sort: nkeys = 1, workMem = 4096, randomAccess = f

LOG: numeric_abbrev: cardinality 10049.436974 after 10240 values (10240 rows)

LOG: switching to external sort with 15 tapes: CPU 0.01s/0.01u sec elapsed 0.02

sec

LOG: starting quicksort of run 1: CPU 0.01s/0.01u sec elapsed 0.02 sec

LOG: finished quicksort of run 1: CPU 0.01s/0.01u sec elapsed 0.03 sec

LOG: finished writing run 1 to tape 0: CPU 0.02s/0.01u sec elapsed 0.04 sec

LOG: performsort starting: CPU 0.31s/0.25u sec elapsed 0.56 sec

LOG: starting quicksort of run 20: CPU 0.31s/0.25u sec elapsed 0.56 sec

LOG: finished quicksort of run 20: CPU 0.31s/0.25u sec elapsed 0.56 sec

LOG: finished writing run 20 to tape 5: CPU 0.31s/0.25u sec elapsed 0.57 sec

LOG: finished 7-way merge step: CPU 0.45s/0.36u sec elapsed 0.82 sec

LOG: grew memtuples 1.29x from 58253 (1366 KB) to 74896 (1756 KB) for final

merge

LOG: tape 0 initially used 144 KB of 144 KB batch (1.000) and 4581 out of 5348

slots (0.857)

LOG: performsort done (except 14-way final merge): CPU 0.45s/0.37u sec elapsed

0.82 sec

LOG: external sort ended, 2679 disk blocks used: CPU 2.07s/0.40u sec elapsed

2.48 sec

163

© 2013-2017 Hewlett-Packard Enterprise.

□ pg_stat_database catalog

In pg_stat_database catalog temporary file information is stored. These values are not only disk sort

by ORDER BY clause, but also disk sorting of indexing by CREATE INDEX statement.

Table 60 Temporary files related data in pg_stat_database catalog

Column name Description

datname database name

temp_files Number of the created temporary files

temp_bytes Total size of the created temporary files

5.3.7 Table sequential scan and index scan
Sequential scan, which access the entire table, and index scan are compared using the system call

issued by postgres process. This is verified immediately after instance startup and no data exists in the

shared buffer. In the following example, the system calls are traced by performing SELECT * FROM

data1 statement for the sequential scan, and SELECT * FROM data1 BETWEEN c1 10000 AND 2000

statement for the index scan. The file of the table data1 is "base/16499/16519", and the file of index

idx1_data1 is "base/16499/16535".

□ Sequential Scan

In the sequential scan, postgres process read the tuples from the beginning of the table one block by

one, and after reading a few blocks, postgres process sents the tuple to the client. Postgres process

does not read multi-block at once. The reason for reading the beginning of the index, even though it

does not use an index, is assumed for execution planning decision.

164

© 2013-2017 Hewlett-Packard Enterprise.

Example 139 System calls of sequencial scan

□ Index Scan

In the index scan, postgres process repeats "reading of the index" and "reading a table". For this

reason lseek system call and read system call are repeated.

open("base/16499/16519", O_RDWR) = 27 -- open file for table

lseek(27, 0, SEEK_END) = 88563712

open("base/16499/16525", O_RDWR) = 29 -- open index file

lseek(29, 0, SEEK_END) = 67477504

lseek(29, 0, SEEK_SET) = 0

read(29, "\0\0\0\0h\342\251e\0\0\60\37\4 \0\0\0\0b1\5\0\2\0\0\0"..., 8192) = 8192

lseek(27, 0, SEEK_END) = 88563712

lseek(27, 0, SEEK_SET) = 0 -- move to first block of table

read(27, "\1\0\0\0\020\374\2\30\3\0 \4 \0\0\0\0\330\0\260\237D\0"..., 8192) = 8192

read(27, "\1\0\0\0\200S\270\50\3\0 \4 \0\0\0\0\330\237D\0\237D\0"..., 8192) = 8192 -

-- read 1 block

read(27, "\1\0\0\0\360s\270\5\0\0\5\0 \4 \0\0\0\0\330\230\237D\0"..., 8192) = 8192 -

-- read 1 block

sendto(10, "T\0\0\0000\0\2c1\0\0\0@\207\0\1\0\0\67\0"..., 8192, 0, NULL, 0) = 8192 -

-- send block to client

read(27, "\1\0\0\0`\224\20\0\74\2\30\3\0 \4 \0\0\0\0\3260\237D\0"..., 8192) = 8192 -

-- read 1 block

read(27, "\1\0\264\270\5\0\0\4\2\30\3\0 \4 \0\0\0\0\330\23237D\0"..., 8192) = 8192 -

-- read 1 block

sendto(10, "\0\25\0\2\0\0\0\003556\0\01D\0\0\0\00355"..., 8192, 0, NULL, 0) = 8192 -

-- sent block to client

165

© 2013-2017 Hewlett-Packard Enterprise.

Example 140 System calls of index scan

5.3.8 BUFFERS parameter
Specifying BUFFERS option to EXPLAIN statement in conjunction with the ANALYZE option, the

buffer information acquired at the time of execution is output. Information to be output are buffer I/O

information for each category; shared buffer (shared), local buffer (local), and temporary segment

(temp).

open("base/16499/16519", O_RDWR) = 36 -- open file for table

lseek(36, 0, SEEK_END) = 88563712

open("base/16499/16525", O_RDWR) = 38 -- open file for index

lseek(38, 0, SEEK_END) = 67477504

lseek(38, 0, SEEK_SET) = 0

read(38, "\0\0\0\0h\342\251e\0\00\360\37\360\37\4 \05\0\2\0\0\0"..., 8192) = 8192

lseek(38, 2375680, SEEK_SET) = 2375680 -- move in index file and read

read(38, "\0\0\033\304\\0\260\230\35\360\37\4 0\0\350\20H\237 \0"..., 8192) = 8192

lseek(38, 24576, SEEK_SET) = 24576 -- move in index file and read

read(38, "\0\0\0\0\210if\0L\3(\23\360\37\4 \\340\237 \0\337\20\0"..., 8192) = 8192

lseek(38, 237568, SEEK_SET) = 237568 -- move in index file and read

read(38, "\1\0\0\0\330\2302\v200\26\360\37\4 340\237 \0\0\237 \0"..., 8192) = 8192

lseek(36, 434176, SEEK_SET) = 434176 -- move in table file and read

read(36, "\1\\0X\352\276\\374\2\30\3\0 \4 \330\237D\0\260\237D\0"..., 8192) = 8192

sendto(10, "T\0\0\0\33\02\0\0\4\23\377\\16\0\0D\\0\0"..., 8192, 0, NULL, 0) = 8192

-- send data to client

166

© 2013-2017 Hewlett-Packard Enterprise.

Example 141 BUFFERS option

The items output after "Buffers:" are as follows. All of the printed numbers are number of blocks (8

KB units).

Table 61 Buffers: output items

Category Item Description

shared hit Shared buffer cache hit

read Shared buffer cache miss

dirtied Reading from dirty buffers

written Shared buffer cache write

local hit Local buffer cache hit

read Local buffer cache miss

dirtied Reading from dirty buffers

written Local buffer cache write

temp read Reading of temporary segments

written Writing of temporary segments

postgres=> EXPLAIN (ANALYZE true, BUFFERS true) SELECT * FROM stat1 s1

ORDER BY c1, c2 ;

 QUERY PLAN

 Sort (cost=1041755.43..1057768.57 rows=6405258 width=10)

(actual time=20067.420..25192.887 rows=6406400 loops=1)

 Sort Key: c1, c2

 Sort Method: external merge Disk: 130288kB

 Buffers: shared hit=16153 read=18477, temp read=33846 written=33846

 -> Seq Scan on stat1 s1 (cost=0.00..98682.58 rows=6405258 width=10)

(actual time=0.290..751.019 rows=6406400 loops=1)

 Buffers: shared hit=16153 read=18477

 Planning time: 0.079 ms

 Execution time: 25535.583 ms

(8 rows)

167

© 2013-2017 Hewlett-Packard Enterprise.

5.4 Configuration Parameters

5.4.1 Parameters related to performance
Major parameters related to PostgreSQL server performance is as follows.

Table 62 Parameters related to performance

Parameter name Description Note

autovacuum_work_mem Memory size of automatic Vacuum 9.4 or later

effective_cache_size The effective capacity of the disk cache that is

available to a single query

effective_io_concurrency The number of concurrent disk I / O operation

huge_pages Use the Huge Pages or not 9.4 or later

maintenance_work_mem The memory for the maintenance work such as

VACUUM, CREATE INDEX, etc.

shared_buffers Shared buffer size

temp_buffers Memory size for temporary table

wal_buffers Shared memory where WAL information is stored

work_mem Temporary memory for hash, and sort

max_wal_size WAL write amount which becomes a generation

opportunity of checkpoint

9.5 or later

replacement_sort_tuples The maximum number of tuples to perform

Replacement Selection in external sort

9.6

5.4.2 Effective_cache_size parameter
This parameter specifies the total size of a shared buffer and the cache used bu the OS. It is mainly

used as a parameter to calculate the cost of the index scan at the decision of the execution planning. It

will be used in gistInitBuffering function (src/backend/access/gist/gistbuild.c) and

index_pages_fetched function (src/backend/optimizer/path/costsize.c).

5.4.3 Effective_io_concurrency parameter
The value specified for this parameter is copied to the GUC target_prefetch_pages. The specified

value is used to calculate the number of prefetch during the processing of the execution plan bitmap

heap scan. Description of this parameter in the manual is obscure, and the effect of the change has not

been verified. As the parameter increases, prefetch number becomes bigger. It is not used in other than

168

© 2013-2017 Hewlett-Packard Enterprise.

the bitmap heap scan. The manual of PostgreSQL 9.6, the following description has been added.

“SSDs and other memory-based storage can often process many concurrent requests, so the best

value might be in the hundreds.”

169

© 2013-2017 Hewlett-Packard Enterprise.

5.5 System Catalog

5.5.1 Entity of the system catalog
System catalog views whose name begins with "pg_" is explained in manual as "PostgreSQL's system

catalogs are regular tables", but the catalogs, the name of which begins with "pg_stat", and get the

execution statistics, provides information from different data sources. From the execution plan, the

entities are verified.

Table 63 Entity of the system catalog

System Catalog Retrieve information from:

pg_statio_*_indexes pg_namespace, pg_class, pg_index, pg_stat_*()

pg_statio_*_sequences pg_namespace, pg_class, pg_stat_*()

pg_statio_*_tables pg_namespace ,pg_index, pg_class, pg_stat_*()

pg_stat_activity pg_database, pg_authid, pg_stat_get_activity()

pg_stat_archiver pg_database, pg_stat_get_db_*()

pg_stat_bgwriter pg_stat_get_*()

pg_stat_database pg_database, pg_stat_get_*()

pg_stat_database_conflicts pg_database, pg_authid, pg_stat_get_*()

pg_stat_replication pg_authid, pg_stat_get_activity(),

pg_stat_get_wal_senders()

pg_stat_*_indexes pg_namespace, pg_class, pg_index, pg_stat_get_*()

pg_stat_*_tables pg_namespace, pg_class, pg_index, pg_stat_get_*()

pg_stat_*_functions pg_namespace, pg_proc, pg_stat_get_function_*()

pg_stat_xact_*_tables pg_namespace, pg_class, pg_index, pg_stat_get_xact_*()

pg_stat_xact_*_functions pg_namespace, pg_proc, pg_index, pg_stat_get_xact_*()

pg_stat_xact_*_tables pg_namespace, pg_index, pg_stat_get_xact_*()

pg_statistic table

pg_stats pg_namespace, pg_class, pg_statistic, pg_attribute,

has_column_privilege()

pg_stat_progress_vacuum pg_stat_get_progress_info(), pg_database

pg_stat_wal_receiver pg_stat_get_wal_receiver()

170

© 2013-2017 Hewlett-Packard Enterprise.

6. Specification of SQL statements

6.1 Lock

6.1.1 Lock type
PostgreSQL gets the lock automatically to keep the integrity of the tuple on the table. Sometimes

applications make an explicit lock by executing LOCK TABLE statement or SELECT FOR UPDATE

statement. Usually locks are held until the transaction is finalized (COMMIT or ROLLBACK). More

information about the lock is described in the manual11.

Table 64 Lock type

Lock name Description

ACCESS SHARE On running SELECT statement, it will be acquired for the target

table. It becomes the weakest lock.

ROW SHARE On running SELECT FOR UPDATE / SELECT FOR SHARE

statement it will be acquired for the table.

ROW EXCLUSIVE This is a lock which UPDATE, DELETE, and INSERT, statements

get. ACCESS SHARE is also acquired for the referenced table.

SHARE UPDATE

EXCLUSIVE

It will be acquired by VACUUM, ANALYZE, CREATE INDEX

CONCURRENTLY and ALTER TABLE statement.

SHARE It will be acquired by CREATE INDEX statement which has no

CONCURRENTLY clause.

SHARE ROW EXCLUSIVE It is not acquired automatically.

EXCLUSIVE It is not acquired automatically.

ACCESS EXCLUSIVE It will be acquired by ALTER TABLE, DROP TABLE,

TRUNCATE, REINDEX, CLUSTER and VACUUM FULL

statement.

6.1.2 Acquisition of lock
Unlike other database such as Oracle Database, PostgreSQL acquires the ACCESS SHARE lock even

which a simple SELECT statement. If IN clause is not specified in the LOCK TABLE statement, the

ACCESS EXCLUSIVE lock is aquired. For this reason, when LOCK TABLE statement is executed

to a table, no access can be performed to the table including SELECT statement. The current lock

11 Online Manual http://www.postgresql.org/docs/9.6/static/explicit-locking.html

http://www.postgresql.org/docs/9.6/static/explicit-locking.html

171

© 2013-2017 Hewlett-Packard Enterprise.

situation can be confirmed from pg_locks catalog.

Example 142 LOCK TABLE statement and lock status

ACCESS EXCLUSIVE LOCK conflicts with all other locks. For this reason, the table, which is

performing the process acquiring this lock, e.g., VACUUM FULL, cannot be accessed even if

processing the search.

postgres=> BEGIN ;

BEGIN

postgres=> LOCK TABLE data1 ;

LOCK TABLE

postgres=>

-- from another session

postgres=> SELECT locktype, relation, mode FROM pg_locks ;

 locktype | relation | mode

------------+----------+---------------------

 virtualxid | | ExclusiveLock

 relation | 16519 | AccessExclusiveLock

172

© 2013-2017 Hewlett-Packard Enterprise.

6.2 Partition Table

6.2.1 Partition Table Overview
Partition table is a function which divides a large-scale table into multiple partition and reduce the

I/O range in order to improve the performance and mainnability. Since partition is hidden from

applications, it looks like a single table.

Figure 15 Partition Table

 In general, the tuple in the partition table is automatically determined to which partition it should be

stored, by the scope and fixed value of the column values.

6.2.2 Partition Table Implementation
Unlike the Oracle Database and Microsoft SQL Server, etc., PostgreSQL does not have the function

of the partition table that can be used for native. It implements the function of the partition table by

combining the inheritance of the table, CHECK constraints and triggers.

Partition table in PostgreSQL will been created in the following procedure.

 Create a parent table (table that the application access via SQL)

 Creating an inheritance table from parent that contains a check constraint (partition)

 Create a function for trigger

 Create an INSERT trigger to the parent table and register a trigger for the function

 Execute SQL statements for the parent table (application issue SQL)

Following example divides the main1table into three partitions (main1_part100, main1_part200,

main1_part300) bu the range of key1 row.

Application

Partition Table

SQL

Partition Partition Partition

173

© 2013-2017 Hewlett-Packard Enterprise.

Example 143 Create parent table

It creates an inheritance table that becomes the partition. Specify the parent table in INHERITS clause

to specify a CHECK constraint on the tuple included in the partition.

Example 144 Create inherit tables (Partition)

Next example creates a function to be used for the trigger.

postgres=> CREATE TABLE main1 (key1 NUMERIC, val1 VARCHAR(10), val2

VARCHAR(10)) ;

CREATE TABLE

postgres=> CREATE TABLE main1_part100 (

 CHECK(key1 < 100)

) INHERITS (main1) ;

CREATE TABLE

postgres=> CREATE TABLE main1_part200 (

 CHECK(key1 >= 100 AND key1 < 200)

) INHERITS (main1) ;

CREATE TABLE

postgres=> CREATE TABLE main1_part300 (

 CHECK(key1 >= 200 AND key1 < 300)

) INHERITS (main1) ;

CREATE TABLE

174

© 2013-2017 Hewlett-Packard Enterprise.

Example 145 Create the FUNCTION for the TRIGGER

The last examples registers the function created bu CREATE FUNCTION statement into the trigger.

Example 146 Create the TRIGGER

6.2.3 Verify the execution plan
The execution plans for the partition table are verified here.

□ The partition selection by the SELECT statement

If there is a syntax that can identify the partition in WHERE clause, it accesses automatically inherits

only the table. However, if the calculation (left-hand side is calculated value, etc.) are necessary to

specify the partitioning column, all the partition tables are accessed.

postgres=> CREATE OR REPLACE FUNCTION func_main1_insert()

RETURNS TRIGGER AS $$

BEGIN

 IF (NEW.key1 < 100) THEN

 INSERT INTO main1_part100 VALUES (NEW.*) ;

 ELSIF (NEW.key1 >= 100 AND NEW.key1 < 200) THEN

 INSERT INTO main1_part200 VALUES (NEW.*) ;

 ELSIF (NEW.key1 < 300) THEN

 INSERT INTO main1_part300 VALUES (NEW.*) ;

 ELSE

 RAISE EXCEPTION 'ERROR! key1 out of range.' ;

 END IF ;

 RETURN NULL ;

END ;

$$

LANGUAGE plpgsql ;

CREATE FUNCTION

postgres=> CREATE TRIGGER trg_main1_insert

 BEFORE INSERT ON main1

 FOR EACH ROW EXECUTE PROCEDURE func_main1_insert() ;

CREATE TRIGGER

175

© 2013-2017 Hewlett-Packard Enterprise.

Example 147 Execution plan of a SELECT statement

□ Execution of INSERT statement

INSERT statement is distributed to the partition tables by the trigger. On the execution plan it is

output that the trigger is activated.

postgres=> EXPLAIN SELECT * FROM main1 WHERE key1 = 10 ;

 QUERY PLAN

 Append (cost=0.00..8.17 rows=2 width=108)

 -> Seq Scan on main1 (cost=0.00..0.00 rows=1 width=108)

 Filter: (key1 = 10::numeric)

 -> Index Scan using pk_main1_part100 on main1_part100 (cost=0.15..8.17 rows=1

width=108)

 Index Cond: (key1 = 10::numeric) -- Access to only one table

 Planning time: 0.553 ms

(6 rows)

postgres=> EXPLAIN SELECT * FROM main1 WHERE key1 + 1 = 11 ;

 QUERY PLAN

--

 Append (cost=0.00..20.88 rows=6 width=108)

 -> Seq Scan on main1 (cost=0.00..0.00 rows=1 width=108)

 Filter: ((key1 + 1::numeric) = 11::numeric)

 -> Seq Scan on main1_part100 (cost=0.00..18.85 rows=3 width=108)

 Filter: ((key1 + 1::numeric) = 11::numeric)

 -> Seq Scan on main1_part200 (cost=0.00..1.01 rows=1 width=108)

 Filter: ((key1 + 1::numeric) = 11::numeric)

 -> Seq Scan on main1_part300 (cost=0.00..1.01 rows=1 width=108)

 Filter: ((key1 + 1::numeric) = 11::numeric)

 Planning time: 0.167 ms –- Access to all tables

(10 rows)

176

© 2013-2017 Hewlett-Packard Enterprise.

Example 148 Execution plan of the INSERT statement

□ Execution of DELETE statement

DELETE statement accesses only to a particular partition if it is possible to specify a partition by

WHERE clause. The condition to spcify a partition is the same as SELECT statement.

Example 149 Execution plan of the DELETE statement

□ Execution of UPDATE statement

UPDATE statement accesses only to a particular partition if it is possible to specify a partition by

WHERE clause. The condition to specify a partition is the same as the SELECT statement.

postgres=> EXPLAIN ANALYZE VERBOSE INSERT INTO main1 VALUES (101, 'val1', 'val2') ;

 QUERY PLAN

 Insert on public.main1 (cost=0.00..0.01 rows=1 width=0) (actual time=0.647..0.647

rows=0 loops=1)

 -> Result (cost=0.00..0.01 rows=1 width=0) (actual time=0.001..0.001 rows=1

loops=1)

 Output: 101::numeric, 'val1'::character varying(10), 'val2'::character

varying(10)

 Planning time: 0.046 ms

 Trigger trg_main1_insert: time=0.635 calls=1

 Execution time: 0.675 ms

(6 rows)

postgres=> EXPLAIN DELETE FROM main1 WHERE key1 = 100 ;

 QUERY PLAN

 Delete on main1 (cost=0.00..8.17 rows=2 width=6)

 -> Seq Scan on main1 (cost=0.00..0.00 rows=1 width=6)

 Filter: (key1 = 100::numeric)

 -> Index Scan using pk_main1_part200 on main1_part200 (cost=0.15..8.17 rows=1

width=6)

 Index Cond: (key1 = 100::numeric)

 Planning time: 0.973 ms

177

© 2013-2017 Hewlett-Packard Enterprise.

Example 150 Execution plan of the UPDATE statement

□ JDBC PreparedStatement

The execution plan in case that the partition key columns are formed to bind variable usin a

PreparedStatement object wan confirmed by Java application. As JDBC Driver, postgresql-9.3-

1101.jdbc41.jar; and as JRE; 1.7.0_09-icedtea was used. Is is confirmed that the automatic selection

function works even if bind variables are used for the partition key.

Example 151 Part of Java application source

Example 152 Execution plan

postgres=> EXPLAIN UPDATE main2 SET val1='upd' WHERE key1 = 100 ;

QUERY PLAN

Update on main2 (cost=0.00..8.30 rows=2 width=46)

 -> Seq Scan on main2 (cost=0.00..0.00 rows=1 width=76)

 Filter: (key1 = 100::numeric)

 -> Index Scan using pk_main2_part1 on main2_part1 (cost=0.29..8.30 rows=1 width=15)

 Index Cond: (key1 = 100::numeric)

 Planning time: 1.329 ms

(6 rows)

PreparedStatement st = cn.prepareStatement("SELECT * FROM main1 WHERE key1=?") ;

st.setInt(1, 200) ;

ResultSet rs = st.executeQuery() ;

Append (cost=0.00..188.99 rows=2 width=62) (actual time=0.018..2.947 rows=1 loops=1)

 -> Seq Scan on main1 (cost=0.00..0.00 rows=1 width=108) (actual time=0.003..0.003

rows=0 loops=1)

 Filter: (key1 = 200::numeric)

 -> Seq Scan on main1_part200 (cost=0.00..188.99 rows=1 width=16)

(actual time=0.014..2.943 rows=1 loops=1)

 Filter: (key1 = 200::numeric)

 Rows Removed by Filter: 9998

Planning time: 1.086 ms

Execution time: 3.005 ms

178

© 2013-2017 Hewlett-Packard Enterprise.

6.2.4 Constraint
The constraint created to the parent table of the partition table does not functions. Constraints must

be specified to the inherit table. In the following example, a primary key constraint is specified on the

parent table, but the primary key violation record is stored.

Example 153 Store a record of a primary key constraint violation

6.2.5 Record move between partitions
The UPDATE statement, which attempts to change the value of the partition key column to the value

to be stored in another partition, cannot be executed.

Example 154 Update of the partition key column

postgres=> ALTER TABLE main1 ADD CONSTRAINT pk_main1 PRIMARY KEY (key1) ;

ALTER TABLE

postgres=> INSERT INTO main1 VALUES (100, 'val1', 'val2') ;

INSERT 0 0

postgres=> INSERT INTO main1 VALUES (100, 'val1', 'val2') ;

INSERT 0 0

postgres=> \d+ main1_part1

 Table "public.main1_part1"

 Column | Type | Modifiers | Storage | Stats target | Description

--------+-----------------------+-----------+----------+--------------+--------

 key1 | numeric | | main | |

 val1 | character varying(10) | | extended | |

 val2 | character varying(10) | | extended | |

Check constraints:

 "main1_part1_key1_check" CHECK (key1 < 10000::numeric)

Inherits: main1

postgres=> UPDATE main1 SET key1 = 15000 WHERE key1 = 100 ;

ERROR: new row for relation "main1_part1" violates check constraint

"main1_part1_key1_check"

DETAIL: Failing row contains (15000, val1, val2).

postgres=>

179

© 2013-2017 Hewlett-Packard Enterprise.

6.2.6 Partition table and statistics
Statistical information in the partition table is stored independently for each parent table and

inheritance table. The value of the reltuples column and relpages column of pg_class catalog of the

parent table is 0. Statistics of pg_stats catalog of the parent table is the sum of all inheritance table.

Statistics of inheritance table in the ANALYZE statement for the parent table is not updated. In the

case of update the statistics of inheritance table, execute ANALYZE statement for each inheritance

table.

The update of the parent table by automatic VACUUM is done only when the update DML for the

parent table is executed. Case of performing a direct update DML to inheritance table, ANALYZE for

the parent table is not executed. As a result, the sum of the statistical information of statistical

information the inheritance table and of the parent table might be different.

6.2.7 Partition table with External table
In PostgreSQL 9.5, as inheritance table of an existing table, you can create an external table

(FOREIGN TABLE). This feature makes it possible to distribute the processing to the multiple hosts

with a combination of partitioning and external table.

Figure 16 FOREIGN TABLE INHERIT

PostgreSQL Instance

BASE TABLE

Client

INHERIT TABLE#1 INHERIT TABLE#2 INHERIT TABLE #3

Remote Instance#1

TABLE#1

Remote Instance#2 Remote Instance #3

TABLE#2 TABLE#3

180

© 2013-2017 Hewlett-Packard Enterprise.

Syntax 4 CREATE FOREIGN TABLE INHERITS

INHERITS clause is new feature of PostgreSQL 9.5. Parent table is specified in INHERITS clause.

Example of the implementation and the verification of the execution plan are shown below.

Example 155 Create parent table

Create tables (inherit1, inherit2, inherit3) on the remote instance.

Example 156 Create child table on the remote instance

Execute CREATE FOREIGN TABLE statement to create an external table corresponds to the table

(inherit1, inherit2, inherit3) on each remote instance.

Example 157 Create External Tables

CREATE FOREIGN TABLE table_name (check_constraints …)

INHERITS (parent_table)

SERVER server_name

OPTIONS (option = 'value' …)

postgres=> CREATE TABLE parent1(key NUMERIC, val TEXT) ;

CREATE TABLE

postgres=> CREATE TABLE inherit1(key NUMERIC, val TEXT) ;

CREATE TABLE

postgres=# CREATE EXTENSION postgres_fdw ;

CREATE EXTENSION

postgres=# CREATE SERVER remsvr1 FOREIGN DATA WRAPPER postgres_fdw

 OPTIONS (host 'remsvr1', dbname 'demodb', port '5432') ;

CREATE SERVER

postgres=# CREATE USER MAPPING FOR public SERVER remsvr1

 OPTIONS (user 'demo', password 'secret') ;

CREATE USER MAPPING

postgres=# GRANT ALL ON FOREIGN SERVER remsvr1 TO public ;

GRANT

postgres=> CREATE FOREIGN TABLE inherit1(CHECK(key < 1000))

 INHERITS (parent1) SERVER remsvr1 ;

CREATE FOREIGN TABLE

181

© 2013-2017 Hewlett-Packard Enterprise.

 The changes from PostgreSQL 9.4 are: specifying CHECK constraint rather than column definition

in CREATE FOREIGN TABLE statement, and specifying the original table in INHERITS clause.

Although the above example shows only one instance, in fact, execute CREATE SERVER statement,

CREATE USER MAPPING statement, and CREATE FOREIGN TABLE statement should be

executed for multiple instances.

Example 158 Check FOREIGN TABLE Definition with INHERITS Clause

When you check the execution plan, you can see that SQL accesses only to a specific instance due to

CHECK constraints.

Example 159 Check the Execution Plan

postgres=> \d+ inherit2

 Foreign table "public.inherit2"

 Column | Type | Modifiers | FDW Options | Storage | Stats target | Description

--------+---------+-----------+-------------+----------+--------------+------------

 key | numeric | | | main | |

 val | text | | | extended | |

Check constraints:

 "inherit2_key_check" CHECK (key >= 1000::numeric AND key < 2000::numeric)

Server: remsvr2

Inherits: parent1

postgres=> EXPLAIN SELECT * FROM parent1 WHERE key = 1500 ;

 QUERY PLAN

 Append (cost=0.00..121.72 rows=6 width=64)

 -> Seq Scan on parent1 (cost=0.00..0.00 rows=1 width=64)

 Filter: (key = '1500'::numeric)

 -> Foreign Scan on inherit2 (cost=100.00..121.72 rows=5 width=64)

(4 rows)

182

© 2013-2017 Hewlett-Packard Enterprise.

6.3 Sequence Object

6.3.1 Using the SEQUENCE object
SEQUENCE is an object that automatically generates a unique numeric value, and it is created using

the CREATE SEQUENCE statement. For detailed usage, please refer to the manual12. To get the value

using the SEQUENCE, specify the name of a sequence to nextval function. In order to get the current

value, specify the currval function. If the currval function is executed without running the nextval

function in the session, it will result in an error.

Example 160 Using the SEQUENCE object

Sequence list refers \ds command of psql utility or the information_schema.sequences view. In

addition, to get the individual information of the sequence, execute a SELECT statement by specifying

the sequence name in the table name.

12 Online Manual https://www.postgresql.org/docs/9.6/static/sql-createsequence.html

postgres=> CREATE SEQUENCE seq01 ;

CREATE SEQUENCE

postgres=> SELECT currval('seq01') ;

ERROR: currval of sequence "seq01" is not yet defined in this session

postgres=> SELECT nextval('seq01') ;

 nextval

 1

(1 row)

postgres=> SELECT currval('seq01') ;

 currval

 1

(1 row)

scottdb=>

https://www.postgresql.org/docs/9.6/static/sql-createsequence.html

183

© 2013-2017 Hewlett-Packard Enterprise.

Example 161 Information obtainment of SEQUENCE

SELECT * FROM seq01;

6.3.2 Cache
CACHE clause can be specified in the CREATE SEQUENCE statement. For this attribute, the

number of the cached sequence value is specified. The default value for the CACHE clause is 1, and

in this case cache is generated. The manual says, "The optional clause CACHE cache specifies how

many sequence numbers are to be pre-allocated and stored in memory for faster access. The minimum

value is 1 (only one value can be generated at a time, ie, no cache), and this is also the default. ", but

it does not describe the exact memory area which "memory" means.

The memory area where cache actually takes place is a virtual memory area of the back-end process

postgres. If more than one session get the SEQUENCE value from one sequence caches corresponding

to the each session are generated. The same value is never obtained, but the relation of the sequence

value size and the chronological sequence value does not match.

postgres=> \ds+

 List of relations

 Schema | Name | Type | Owner | Size | Description

--------+-------+----------+-------+------------+-------------

 public | seq01 | sequence | data1 | 8192 bytes |

(1 row)

postgres=> SELECT sequence_schema, sequence_name, start_value FROM

 information_schema.sequences ;

 sequence_schema | sequence_name | start_value

-----------------+---------------+-------------

 public | seq01 | 1

(1 row)

postgres=> SELECT sequence_name, start_value, cache_value FROM seq01 ;

 sequence_name | start_value | cache_value

---------------+-------------+-------------

 seq01 | 1 | 1

(1 row)

184

© 2013-2017 Hewlett-Packard Enterprise.

Example 162 Cache and chronological sequence value

 In the above example, a SEQUENCE is created by specifying CACHE 10, and the value is obtained

using nextval function. At this point in the SESSION#1 session the value 1 to 10 is created as a cache.

Next, as the nextval function is executed in SESSION#2 session, another cache of value 11 to 20 is

created, and the nextval function returns 11. DISCARD SEQUENCES statement becomes available

on PostgreSQL 9.4 to remove a sequence cache.

(SESSION#1) postgres=> CREATE SEQUENCE seq01 CACHE 10 ;

CREATE SEQUENCE

(SESSION#1) postgres=> SELECT nextval('seq01') ;

 nextval

 1

(1 row)

(SESSION#2) postgres=> SELECT nextval('seq01') ;

 nextval

 11

(1 row)

(SESSION#1) postgres=> SELECT nextval('seq01') ;

 nextval

 2

(1 row)

(SESSION#2) postgres=> SELECT nextval('seq01') ;

 nextval

 12

(1 row)

185

© 2013-2017 Hewlett-Packard Enterprise.

6.3.3 Transaction
Sequence values are independent of the transaction. Sequence value obtained during a transaction

cannot be rolled back.

Example 163 Sequence and Transaction

postgres=> BEGIN ;

BEGIN

postgres=> SELECT nextval('seq01') ;

 nextval

 3

(1 row)

postgres=> ROLLBACK ;

ROLLBACK

postgres=> SELECT nextval('seq01') ;

 nextval

 4

(1 row)

postgres=>

186

© 2013-2017 Hewlett-Packard Enterprise.

6.4 Bind variables and PREPARE statement
Executing PREPARE statement can create a prepared statement object on the session. By reusing a

prepared statement, it can be used to reduce the load of the SQL parsing and rewriting. I confirmed

that execution plan is created when EXECUTE statement is executed using the auto_explain Contrib

module. When not in use bind variables, the execution plan of the SQL statement that was created by

the PREPARE statement using the table and the SQL statements that change the execution plan by

the column values has been confirmed or not to change.

In the following example, after creating a bind1test object in the PREPARE statement, running

twice SELECT statement with different parameters. To get the most of the data in the table in the

first run, in the second run and has obtained part in the table. Index has been given to the column c2.

Example 164 Creating and executing PREPARE object

I've output the execution plan by auto_explain Contrib module. Seq Scan has been adopted in the

first execution.

postgres=> PREPARE bind1test(VARCHAR) AS SELECT COUNT(*) FROM bind1

WHERE c2=$1 ;

PREPARE

postgres=> EXECUTE bind1test('maj') ;

 count

 10000000

(1 row)

postgres=> EXECUTE bind1test('min') ;

 count

 101

(1 row)

187

© 2013-2017 Hewlett-Packard Enterprise.

Example 165 Execution plan of the first execution

In the second execution, Index Only Scan has been adopted.

Example 166 Execution plan of the second execution

As a result, you will find that the execution plan has been changed. Because of this execution plan

even when the run the PREPARE statement was confirmed that is created each time. This behavior

has been adopted from PostgreSQL 9.2. Until the execution plan as Oracle Database and Microsoft

SQL Server does not mean to cache.

LOG: duration: 1583.140 ms plan:

 Query Text: PREPARE bind1test(VARCHAR) AS SELECT COUNT(*) FROM bind1

WHERE c2=$1 ;

 Aggregate (cost=204053.52..204053.53 rows=1 width=0)

 -> Seq Scan on bind1 (cost=0.00..179055.85 rows=9999068 width=0)

 Filter: ((c2)::text = 'maj'::text)

LOG: duration: 0.046 ms plan:

 Query Text: PREPARE bind1test(VARCHAR) AS SELECT COUNT(*) FROM

bind1 WHERE c2=$1;

 Aggregate (cost=41.44..41.45 rows=1 width=0)

 -> Index Only Scan using idx1_bind1 on bind1 (cost=0.43..38.94

rows=1000 width=0)

 Index Cond: (c2 = 'min'::text)

188

© 2013-2017 Hewlett-Packard Enterprise.

6.5 INSERT ON CONFLICT statement

6.5.1 Basic syntax of INSERT ON CONFLICT statement
When INSERT statement is executed under condition that if becomes a constraint violation,

automatic switch to the UPDATE statement is now available on PostgreSQL 9.5 (called UPSERT

statement). To use this feature, specify the ON CONFLICT clause in the INSERT statement.

Syntax 5 INSERT ON CONFLICT

In the ON CONFLICT clause, specify where the constraint violation will occur.

 Specify a list of column names, or a constraint name in the syntax of the "ON CONSTRAINT

constraint_name".

 In case of specifying constraints consisting of multiple columns, it is necessary to specify all

of the column names that are included in the constraint.

 If you omit the par after ON CONFLICT, all of the constraint violation is checked. This

omission is available only in case of using DO NOTHING clause.

 When the constraint violation occurs for other than the specified columns or constraints in the

ON CONFLICT clause, INSERT statement will result in an error.

After the ON CONFLICT clause, the behavior when constraint violation has occurred is described.

If you specify a DO NOTHING clause, nothing is done for constraint violations occurred (constraint

violation does not occur). If you specify a DO UPDATE clause, UPDATE to the specific columns is

executed. Following is the execution examples.

INSERT INTO …

ON CONFLICT [{ (column_name, …) | ON CONSTRAINT constraint_name }]

{ DO NOTHING | DO UPDATE SET column_name = value }

[WHERE …]

189

© 2013-2017 Hewlett-Packard Enterprise.

Example 167 Prepare table and data

The following is a description example of the ON CONFLICT clause. Since DO NOTHING is

specified in the handling part, nothing is done even if constraint violation occurs.

Example 168 ON CONFLICT clause

In the DO UPDATE clause, you describes the update process. This is basically the same as the part

subsequent the SET clause in the UPDATE statement. If you use an alias EXCLUDED, you can

access the records that could not be stored when INSERT statement is executed.

postgres=> CREATE TABLE upsert1 (key NUMERIC, val VARCHAR(10)) ;

CREATE TABLE

postgres=> ALTER TABLE upsert1 ADD CONSTRAINT pk_upsert1 PRIMARY KEY (key) ;

ALTER TABLE

postgres=> INSERT INTO upsert1 VALUES (100, 'Val 1') ;

INSERT 0 1

postgres=> INSERT INTO upsert1 VALUES (200, 'Val 2') ;

INSERT 0 1

postgres=> INSERT INTO upsert1 VALUES (300, 'Val 3') ;

INSERT 0 1

postgres=> INSERT INTO upsert1 VALUES (200, 'Update 1')

ON CONFLICT DO NOTHING ; -- omit constraint name or column

INSERT 0 0

postgres=> INSERT INTO upsert1 VALUES (200, 'Update 1')

ON CONFLICT(key) DO NOTHING ; -- set column name

INSERT 0 0

postgres=> INSERT INTO upsert1 VALUES (200, 'Update 1')

ON CONFLICT(val) DO NOTHING ; -- error when no constraint column set

ERROR: there is no unique or exclusion constraint matching the ON CONFLICT

specification

postgres=> INSERT INTO upsert1 VALUES (200, 'Update 1')

ON CONFLICT ON CONSTRAINT pk_upsert1 DO NOTHING ; -- set constraint

INSERT 0 0

190

© 2013-2017 Hewlett-Packard Enterprise.

Example 169 DO UPDATE clause samples

6.5.2 Relation between ON CONFLICT Clause and Trigger
How the trigger works during the execution of INSERT ON CONFLICT statement is verified.

BEFORE INSERT trigger has always been executed. If the record is updated by DO UPDATE

statement, BEFORE INSERT trigger and BEFORE / AFTER UPDATE trigger worked. Only

BEFORE INSERT trigger was executed if the UPDATE is not performed by the WHERE clause.

Table 65 Executed triggers (ON EACH ROW trigger; the numbers are the order of execution)

Trigger Success

INSERT

DO NOTHING DO UPDATE

(Updated)

DO UPDATE

(NO Updated)

BEFORE INSERT 1, Execute 1, Execute 1, Execute 1, Execute

AFTER INSERT 2, Execute - - -

BEFORE UPDATE - - 2, Execute -

AFTER UPDATE - - 3, Execute -

postgres=> INSERT INTO upsert1 VALUES (400, 'Upd4')

ON CONFLICT DO UPDATE SET val = EXCLUDED.val ; -- No constraint error

ERROR: ON CONFLICT DO UPDATE requires inference specification or constraint name

LINE 2: ON CONFLICT DO UPDATE SET val = EXCLUDED.val;

 ^

HINT: For example, ON CONFLICT ON CONFLICT (<column>).

postgres=> INSERT INTO upsert1 VALUES (300, 'Upd3')

ON CONFLICT(key) DO UPDATE SET val = EXCLUDED.val ; -- Use EXCLUDED alias

INSERT 0 1

postgres=> INSERT INTO upsert1 VALUES (300, 'Upd3')

ON CONFLICT(key) DO UPDATE SET val = EXCLUDED.val WHERE upsert1.key = 100 ;

INSERT 0 0 -- Can determin UPDATE conditions when specify the WHERE clause

191

© 2013-2017 Hewlett-Packard Enterprise.

Table 66 Executed triggers (ON EACH STATEMENT; the numbers are the order of execution)

Trigger Success

INSERT

DO NOTHING DO UPDATE

(Updated)

DO UPDATE

(NO Updated)

BEFORE INSERT 1,Execute 1,Execute 1,Execute 1,Execute

AFTER INSERT 4,Execute 2,Execute 4,Execute 4,Execute

BEFORE UPDATE 2,Execute - 2,Execute 2,Execute

AFTER UPDATE 3,Execute - 3,Execute 3,Execute

6.5.3 ON CONFLICT clause and Execution Plan
By executing ON CONFLICT clause, the execution plan will change. When you run the EXPLAIN

statement, Conflict Resolution, Conflict Arbiter Indexes, and Conflict Filter appear in the execution

plan. Actual output is shown in the following example.

192

© 2013-2017 Hewlett-Packard Enterprise.

Example 170 ON CONFLICT Clause and Execution Plan

In current version does not support ON CONFLICT DO UPDATE statement to the remote instance

using postgres_fdw module.

postgres=> EXPLAIN INSERT INTO upsert1 VALUES (200, 'Update 1')

ON CONFLICT(key) DO NOTHING ;

 QUERY PLAN

 Insert on upsert1 (cost=0.00..0.01 rows=1 width=0)

 Conflict Resolution: NOTHING

 Conflict Arbiter Indexes: pk_upsert1

 -> Result (cost=0.00..0.01 rows=1 width=0)

(4 rows)

postgres=> EXPLAIN INSERT INTO upsert1 VALUES (400, 'Upd4')

ON CONFLICT(key) DO UPDATE SET val = EXCLUDED.val ;

 QUERY PLAN

 Insert on upsert1 (cost=0.00..0.01 rows=1 width=0)

 Conflict Resolution: UPDATE

 Conflict Arbiter Indexes: pk_upsert1

 -> Result (cost=0.00..0.01 rows=1 width=0)

(4 rows)

postgres=> EXPLAIN INSERT INTO upsert1 VALUES (400, 'Upd4')

ON CONFLICT(key) DO UPDATE SET val = EXCLUDED.val WHERE upsert1.key = 100 ;

 QUERY PLAN

 Insert on upsert1 (cost=0.00..0.01 rows=1 width=0)

 Conflict Resolution: UPDATE

 Conflict Arbiter Indexes: pk_upsert1

 Conflict Filter: (upsert1.key = '100'::numeric)

 -> Result (cost=0.00..0.01 rows=1 width=0)

(5 rows)

193

© 2013-2017 Hewlett-Packard Enterprise.

6.5.4 ON CONFLICT clause and the partition table
ON CONFLICT clause for partition table using the INSERT trigger it will be ignored.

Example 171 INSERT ON CONLICT statement for the partition table#1

postgres=> CREATE TABLE main1 (key1 NUMERIC, val1 VARCHAR(10)) ;

CREATE TABLE

postgres=> CREATE TABLE main1_part100 (CHECK(key1 < 100)) INHERITS (main1) ;

CREATE TABLE

postgres=> CREATE TABLE main1_part200 (CHECK(key1 >= 100 AND key1 < 200))

 INHERITS (main1) ;

CREATE TABLE

postgres=> ALTER TABLE main1_part100 ADD CONSTRAINT pk_main1_part100

PRIMARY KEY (key1);

ALTER TABLE

postgres=> ALTER TABLE main1_part200 ADD CONSTRAINT pk_main1_part200

PRIMARY KEY (key1);

ALTER TABLE

postgres=> CREATE OR REPLACE FUNCTION func_main1_insert()

RETURNS TRIGGER AS $$

 BEGIN

 IF (NEW.key1 < 100) THEN

 INSERT INTO main1_part100 VALUES (NEW.*) ;

 ELSIF (NEW.key1 >= 100 AND NEW.key1 < 200) THEN

 INSERT INTO main1_part200 VALUES (NEW.*) ;

 ELSE

 RAISE EXCEPTION 'ERROR! key1 out of range.' ;

 END IF ;

 RETURN NULL ;

 END ;

$$ LANGUAGE 'plpgsql';

CREATE FUNCTION

194

© 2013-2017 Hewlett-Packard Enterprise.

Example 172 INSERT ON CONLICT statement for the partition table#2

postgres=> CREATE TRIGGER trg_main1_insert BEFORE INSERT ON main1

 FOR EACH ROW EXECUTE PROCEDURE func_main1_insert() ;

CREATE TRIGGER

postgres=> INSERT INTO main1 VALUES (100, 'DATA100') ;

INSERT 0 0

postgres=> INSERT INTO main1 VALUES (100, 'DATA100') ;

ERROR: duplicate key value violates unique constraint "pk_main1_part200"

DETAIL: Key (key1)=(100) already exists.

CONTEXT: SQL statement "INSERT INTO main1_part200 VALUES (NEW.*)"

PL/pgSQL function func_main1_insert() line 6 at SQL statement

postgres=> INSERT INTO main1 VALUES (100, 'DATA100')

ON CONFLICT DO NOTHING ;

ERROR: duplicate key value violates unique constraint "pk_main1_part200"

DETAIL: Key (key1)=(100) already exists.

CONTEXT: SQL statement "INSERT INTO main1_part200 VALUES (NEW.*)"

PL/pgSQL function func_main1_insert() line 6 at SQL statement

195

© 2013-2017 Hewlett-Packard Enterprise.

6.6 TABLESAMPLE

6.6.1 Overview
TABLESAMPLE clause is the syntax for sampling a certain percentage of the record from the

table. This syntax is available from PostgreSQL 9.5.

Syntax 6 TABLESAMPLE Clause

You can choose SYSTEM or BERNOULLI as sampling method. SYSTEM uses the tuple entire

block sampled. BERNOULLI choose a more constant rate of tuples from sampled block. In 'percent'

you specify the sampling percentage (1-100). When you specify the value other than 1 - 100

SELECT statement results in an error. REPEATABLE clause is optional the seed of sampling can be

specified.

6.6.2 SYSTEM と BERNOULLI
SYSTEM clause uses a tuple of the entire block that was sampled. BERNOULLI will select a

certain percentage of the tuple from within the block. In order to perform the sampling, it must first

estimate the number of records in the entire table. Scanning method of the table, how to check the

visible record is changed by the sampling method and the sampling rate.

□ SYSTEM

If the sampling rate is more than 1%, bulk load (Bulk Read) is performed. Check visualization is

done in page mode. The following is the source code of the relevant part.

SELECT … FROM table_name …

TABLESAMPLE {SYSTEM | BERNOULLI} (percent)

[REPEATABLE (seed)]

196

© 2013-2017 Hewlett-Packard Enterprise.

Example 173 system_beginsamplescan function (src/backend/access/tablesample/system.c)

□ BERNOULLI

Always will be performed bulk load (Bulk Read). Check visualization is done in page mode when

the sampling rate is more than 25 percent. The following is the source code of the relevant part.

Example 174 bernoulli_beginsamplescan function (src/backend/access/tablesample/bernoulli.c)

In the following example, to create a table of the same structure, it has confirmed the number of

read block. Both table size is 5,000 block.

/*

* Bulkread buffer access strategy probably makes sense unless we're

* scanning a very small fraction of the table. The 1% cutoff here is a

* guess. We should use pagemode visibility checking, since we scan all

* tuples on each selected page.

*/

node->use_bulkread = (percent >= 1);

node->use_pagemode = true;

/*

* Use bulkread, since we're scanning all pages. But pagemode visibility

* checking is a win only at larger sampling fractions. The 25% cutoff

* here is based on very limited experimentation.

*/

node->use_bulkread = true;

node->use_pagemode = (percent >= 25);

197

© 2013-2017 Hewlett-Packard Enterprise.

Example 175 Confirmation of the number of read block

6.6.3 Execution Plan
Execution plan in the case of performing the sampling will be as follows. If you specify a

BERNOULLI, you can see that the cost increases.

Example 176 Execution plan for TABLESAMPLE SYSTEM

postgres=> EXPLAIN ANALYZE SELECT COUNT(*) FROM data1 TABLESAMPLE SYSTEM (10) ;

 QUERY PLAN

Aggregate (cost=341.00..341.01 rows=1 width=0) (actual time=4.914..4.915 rows=1

loops=1)

-> Sample Scan (system) on data1 (cost=0.00..316.00 rows=10000 width=0)

(actualtime=0.019..3.205 rows=10090 loops=1)

 Planning time: 0.106 ms

 Execution time: 4.977 ms

(4 rows)

postgres=> SELECT COUNT(*) FROM samplesys TABLESAMPLE SYSTEM (10) ;

postgres=> SELECT COUNT(*) FROM sampleber TABLESAMPLE BERNOULLI (10) ;

postgres=> SELECT relname, heap_blks_read FROM pg_statio_user_tables ;

 relname | heap_blks_read

-----------+----------------

 samplesys | 533

 sampleber | 4759

(2 rows)

198

© 2013-2017 Hewlett-Packard Enterprise.

Example 177 Execution plan for TABLESAMPLE BERNOULLI

postgres=> EXPLAIN ANALYZE SELECT COUNT(*) FROM data1 TABLESAMPLE

BERNOULLI (10) ;

 QUERY PLAN

 Aggregate (cost=666.00..666.01 rows=1 width=0) (actual time=13.654..13.655

rows=1 loops=1)

-> Sample Scan (bernoulli) on data1 (cost=0.00..641.00 rows=10000 width=0)

(actual time=0.013..12.121 rows=10003 loops=1)

 Planning time: 0.195 ms

 Execution time: 13.730 ms

(4 rows)

199

© 2013-2017 Hewlett-Packard Enterprise.

6.7 Changing a table attribute.
Table definition can be changed in the ALTER TABLE statement. Here I describe the impact of the

ALTER TABLE statement.

6.7.1 ALTER TABLE SET UNLOGGED
By executing the ALTER TABLE SET LOGGED statement or ALTER TABLE SET UNLOGGED

statement, you can switch between the normal table and the unlogged table.

Example 178 Switching to UNLOGGED TABLE

The \d+ command of psql command, you can see that the normal table has been changed to

UNLOGGED table. When setting change, internally to create a new UNLOGGED TABLE (or

TABLE) with the same structure, and then copy the data. The relfilenode columns and relpersistence

column of the pg_class catalog will be changed.

postgres=> CREATE TABLE logtbl1 (c1 NUMERIC, c2 VARCHAR(10)) ;

CREATE TABLE

postgres=> \d+ logtbl1

 Table "public.logtbl1"

 Column | Type | Modifiers | Storage | Stats target | Description

--------+-----------------------+-----------+----------+--------------+-------------

 c1 | numeric | | main | |

 c2 | character varying(10) | | extended | |

postgres=> ALTER TABLE logtbl1 SET UNLOGGED ;

ALTER TABLE

postgres=> \d+ logtbl1

 Unlogged table "public.logtbl1"

 Column | Type | Modifiers | Storage | Stats target | Description

--------+-----------------------+-----------+----------+--------------+-------------

 c1 | numeric | | main | |

 c2 | character varying(10) | | extended | |

200

© 2013-2017 Hewlett-Packard Enterprise.

Example 179 Change of relfilenode column

□ Switching in the replication environment

You cannot access the UNLOGGED table in slave instance of streaming replication environment.

For this reason, the table has been changed from LOGGED TABLE to UNLOGGED TABLE is, it will

no longer be accessible from the slave instance.

Example 180 Reference UNLOGGED TABLE in slave instance

On the other hand, in the change from the UNLOGGED TABLE to LOGGED TABLE, because the

WAL is output, the contents of the table, which was converted into LOGGED TABLE is, will be

accessible at the slave instance.

postgres=> SELECT relname, relfilenode, relpersistence FROM pg_class

 WHERE relname='logtbl1' ;

 relname | relfilenode | relpersistence

---------+-------------+----------------

 logtbl1 | 16483 | p

(1 row)

postgres=> ALTER TABLE logtbl1 SET UNLOGGED ;

ALTER TABLE

postgres=> SELECT relname, relfilenode, relpersistence FROM pg_class

 WHERE relname='logtbl1' ;

 relname | relfilenode | relpersistence

---------+-------------+----------------

 logtbl1 | 16489 | u

(1 row)

MASTER

postgres=> ALTER TABLE logtest1 SET UNLOGGED ;

ALTER TABLE

SLAVE

postgres=> SELECT * FROM logtest1 ;

ERROR: cannot access temporary or unlogged relations during recovery

201

© 2013-2017 Hewlett-Packard Enterprise.

Example 181 Reference TABLE in slave instance

6.7.2 ALTER TABLE SET WITH OIDS
When you execute ALTER TABLE SET WITH OIDS statement or ALTER TABLE SET WITHOUT

OIDS statement, the temporary table of different attributes are created, data is copied. For this reason,

the file names constituting the table is changed. It will also be re-created also the index that have been

granted to the table.

MASTER

postgres=> CREATE UNLOGGED TABLE logtest1(c1 NUMERIC) ;

CREATE TABLE

postgres=> INSERT INTO logtest1 VALUES (generate_series(1, 10000)) ;

INSERT 0 10000

postgres=> ALTER TABLE logtest1 SET LOGGED ;

ALTER TABLE

SLAVE

postgres=> SELECT COUNT(*) FROM logtest1 ;

count

 10000

(1 row)

202

© 2013-2017 Hewlett-Packard Enterprise.

Example 182 Filename with ALTER TABLE SET WITH OIDS

6.7.3 ALTER TABLE MODIFY COLUMN TYPE
 If you run the ALTER TABLE ALTER COLUMN TYPE statement can change the data type of the

column. Case of reduce the size of the column data by the execution of the ALTER TABLE statement

it will be re-created table. For this reason the file name for which you want to configure the table is

changed, it will also be re-created all of the index, which is granted to the table. The following

examples set the parameters log_min_messages to debug5, it is a log of when the c2 column of the

table data1 column was changed from NUMERIC type NUMERIC (10) type. You will find that index

idx1_data1 has been re-created.

postgres=> SELECT relname, relfilenode FROM pg_class WHERE relname = 'data1' ;

 relname | relfilenode

------------+-------------

 data1 | 16468

 (1 row)

postgres=> ALTER TABLE data3 SET WITH OIDS ;

ALTER TABLE

postgres=> SELECT relname, relfilenode FROM pg_class WHERE relname = 'data1' ;

 relname | relfilenode

------------+-------------

 data1 | 17489

 (1 row)

203

© 2013-2017 Hewlett-Packard Enterprise.

Example 183 Log for ALTER TABLE ALTER COLUMN TYPE statement

DEBUG: StartTransactionCommand

DEBUG: StartTransaction

DEBUG: name: unnamed; blockState: DEFAULT; state: INPROGR,

xid/subid/cid: 0/1/0, nestlvl: 1, children:

DEBUG: ProcessUtility

DEBUG: EventTriggerTableRewrite(16415)

DEBUG: building index "pg_toast_16447_index" on table "pg_toast_16447"

DEBUG: rewriting table "data1"

DEBUG: building index "idx1_data1" on table "data1"

DEBUG: drop auto-cascades to type pg_temp_16415

DEBUG: drop auto-cascades to type pg_temp_16415[]

DEBUG: drop auto-cascades to toast table pg_toast.pg_toast_16415

DEBUG: drop auto-cascades to index pg_toast.pg_toast_16415_index

DEBUG: drop auto-cascades to type pg_toast.pg_toast_16415

DEBUG: CommitTransactionCommand

DEBUG: CommitTransaction

204

© 2013-2017 Hewlett-Packard Enterprise.

6.8 ECPG
ECPG is a preprocessor to write SQL statements directly into the C language program. In this section

I have examined the host variable to get the results of executing the SQL statement.

6.8.1 Format of the host variable
I examined the output format of the case that has acquired the character string data in the host variable.

□ CHAR type column values

The CHAR type column of the table writing to the array of char. Stored the "ABC" to a column of

CHAR (5) column type and validate the format of the case that was stored in the C language variable

char [7]. SP is space (0x20), NL is NULL (0x00), OR indicates that not been changed in the following

examples.

Table 67 Column type CHAR (5) to host variable char [7]

Host array char[0] char[1] char[2] char[3] char[4] char[5] char[6]

Stored data A B C SP SP NL OR

Is a space after the string is given, the last contains the NULL.

□ VARCHAR type column values

The VARCHAR type column of the table writing to the array of char. Stored the "ABC" to a column

of VARCHAR (5) column type and validate the format of the case that was stored in the C language

variable char [7].

Table 68 Column type VARCHAR(5) to host variable char[7]

Host array char[0] char[1] char[2] char[3] char[4] char[5] char[6]

Stored data A B C NL OR OR OR

Is stored NULL after the string, it will value after the NULL can be seen that not been changed.

□ VARCHAR type host variable

It can be specified the VARCHAR type host variable. When this variable is passed through the

ecpg, it will be converted into a structure with member int len and char arr [{99}].

205

© 2013-2017 Hewlett-Packard Enterprise.

Table 69 Column type VARCHAR(5) to host variable VARCHAR(7)

Host array arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6]

Stored data A B C NL NL NL NL

All char arr[] array in which data is stored will see that it has been initialized with NULL (0x00).

6.8.2 Behavior at the time of out-of-space
When output the value of the string type column to the host variable, when the area of the host

variable is insufficient result is truncated, positive value is written to the indicator variable. The manual

is shown as follows, there is no description of the specific operation.

Example 184 Manual for Indicator

□ At the time of out-of-space host variables #1

Writes a VARCHAR type column of the table to a char array, to verify the format when char type is

running out of space. Stores the "ABCDE" to VARCHAR (5) type column, to verify the format of the

case that is stored in the C language variable char [3].

Table 70 Column type VARCHAR(5) to host variable char[3]

Host array char[0] char[1] char[2]

Stored data A B C

It is stored to the part that can be stored as described above but NULL values are not granted. The

indicator is stored five.

□ At the time of out-of-space host variables #2

The VARCHAR type column writes to char array but char type of area was to verify the format of

the case that are missing only NULL values. Stores the "ABCDE" to VARCHAR (5) type column, to

verify the format of the case that is stored in the C language variable char [5].

This second host variable is called the indicator and contains a flag

that tells whether the datum is null, in which case the value of the

real host variable is ignored.

206

© 2013-2017 Hewlett-Packard Enterprise.

Table 71 Column type VARCHAR(5) to host variable char[5]

Host array char[0] char[1] char[2] char[3] char[4]

Stored data A B C D E

Database storage character as described above will be saved as it is, NULL values are not given. Zero

is specified for the indicator. For this reason, space for the NULL cannot identify in the indicator also

missing.

207

© 2013-2017 Hewlett-Packard Enterprise.

6.9 Parallel Query

6.9.1 Overview
In the conventional PostgreSQL, all of the SQL statements ware executed only by the back-end

process that accepts the connection. In PostgreSQL 9.6 it is possible to perform parallel processing by

multiple worker processes.

Figure 17 Parallel Seq Scan / Parallel Aggregate

Parallel processing can be executed only for Seq Scan, Join and Aggregate. The degree of parallelism

depends on the size of the table. Processes executing parallel processing use the mechanism of the

Background Worker. The maximum value of the degree of parallelism is determined by the parameter

max_parallel_workers_per_gather or max_worker_processes, whichever is smaller. Parameter

max_parallel_degree can be changed by general users by per-session.

Backend Client

Storage

Worker Worker

208

© 2013-2017 Hewlett-Packard Enterprise.

Table 72 Related parameters for parallel processing

Parameter Name Description (context) Default value

max_parallel_workers_per

_gather

The maximum value of the degree of parallelism

(user)

0

parallel_setup_cost Start cost of parallel processing (user) 1000

parallel_tuple_cost Tuple cost of parallel processing (user) 0.1

max_worker_processes The maximum value of the worker process

(postmaster)

8

force_parallel_mode Force parallel processing (user) off

min_parallel_relation_size Minimum table size to consider the parallel

processing

8MB

□ Parameter force_parallel_mode

Parallel processing is executed only when the cost is considered lower than the normal serial

processing. By specifying the parameter force_parallel_mode to on, parallel processing is forced (Also

value "regress" is for the regression test). However, the parallel processing is executed only when the

parameter max_parallel_workers_per_gather is 1 or more.

□ Related table option

Table option parallel_workers determines the degree of parallelism for each table. When the value is

set to 0, parallel processing is prohibited. If not set, the parameters max_parallel_workers_per_gather

of the session will be the upper limit. If parallel_workers is set to greater than the

max_parallel_workers_per_gather, the upper limit of the actual degree of parallelism cannot exceed

the max_parallel_degree.

Example 185 Set the table option parallel_degree

postgres=> ALTER TABLE data1 SET (parallel_degree = 2) ;

ALTER TABLE

postgres=> \d+ data1

 Table "public.data1"

 Column | Type | Modifiers | Storage | Stats target | Description

--------+-----------------------+-----------+----------+--------------+-----------

 c1 | numeric | | main | |

 c2 | character varying(10) | | extended | |

Options: parallel_workers=5

209

© 2013-2017 Hewlett-Packard Enterprise.

6.9.2 Execution plan
 The example below is the execution plan of the parallel processing SELECT statement. COUNT

processing of large-scale table is processed in 3 parallelism.

Example 186 Execution plan of parallel processing

postgres=> SET max_parallel_degree = 10 ;

SET

postgres=> EXPLAIN (ANALYZE, VERBOSE) SELECT COUNT(*) FROM data1 ;

 QUERY PLAN

--

Finalize Aggregate (cost=29314.09..29314.10 rows=1 width=8)

(actual time=662.055..662.055 rows=1 loops=1)

 Output: pg_catalog.count(*)

 -> Gather (cost=29313.77..29314.08 rows=3 width=8)

(actual time=654.818..662.043 rows=4 loops=1)

 Output: (count(*))

 Workers Planned: 3

 Workers Launched: 3

 -> Partial Aggregate (cost=28313.77..28313.78 rows=1 width=8)

(actual time=640.330..640.331 rows=1 loops=4)

 Output: count(*)

 Worker 0: actual time=643.386..643.386 rows=1 loops=1

 Worker 1: actual time=645.587..645.588 rows=1 loops=1

 Worker 2: actual time=618.493..618.494 rows=1 loops=1

 -> Parallel Seq Scan on public.data1 (cost=0.00..25894.42

 rows=967742 width=0) (actual time=0.033..337.848 rows=750000 loops=4)

 Output: c1, c2

 Worker 0: actual time=0.037..295.732 rows=652865 loops=1

 Worker 1: actual time=0.026..415.235 rows=772230 loops=1

 Worker 2: actual time=0.042..359.622 rows=620305 loops=1

 Planning time: 0.130 ms

 Execution time: 706.955 ms

(18 rows)

210

© 2013-2017 Hewlett-Packard Enterprise.

Following execution plan component can be shown by the EXPLAIN statement about parallel

processing.

Table 73 The output of the EXPLAIN statement

Plan component Description Explain

Statement

Parallel Seq Scan Parallel search processing All

Partial Aggregate Aggregation processing performed by the

worker process

All

Partial HashAggregate

Partial GroupAggregate

Gather Processing to aggregate the worker process All

Finalize Aggregate The final aggregation processing All

Workers Planned: The number of planned worker processes All

Workers Launched: The number of workers that are actually run ANALYZE

Worker N (N=0,1,…) Processing time of each worker, etc ANALYZE,

VERBOSE

Single Copy Processing to be executed in a single process All

6.9.3 Parallel processing and functions
There are usable functions and unusable functions in parallel processing. When functions which have

"u" (PARALLEL UNSAFE) value for proparallel column in pg_proc catalog are user in SQL statement,

parallel processing cannot be performed. The following table shows major standard PARALLEL

UNSAFE functions.

Table 74 Major PARALLEL UNSAFE standard functions

Category Function name examples

SEQUENCE object nextval, currval, setval, lastval

Large Object lo_*, loread, lowrite

Replication pg_create_*_slot, pg_drop_*_slot, pg_logical_*, pg_replication_*

Other make_interval, parse_ident, pg_extension_config_dump, pg_*_backup,

set_config, ts_debug, txid_current, query_to_xml*

In the following example, two SQL statements that differ only conditional part of the WHERE clause are

executed. SELECT statement with the literal in the WHERE clause will be performed parallel processing

but, SELECT statement with the currval of sequence operation function is executed in serial.

211

© 2013-2017 Hewlett-Packard Enterprise.

Example 187 The difference of the execution plan by the use of PARALLEL UNSAFE function

In pg_proc in the catalog, functions that are the proparallel column "r" can only be run on the leader

process of parallel processing.

Table 75 Major RESTRICTED PARALLEL SAFE standard functions

Category Function name examples

Date and Age age, now

Random number random, setseed

Upgrade binary_upgrade*

Convert to XML cursor_to_xml*, database_to_xml*, schema_to_xml*, table_to_xml*

Other pg_start_backup, inet_client*, current_query, pg_backend_pid, pg_conf*,

pg_cursor, pg_get_viewdef, pg_prepared_statement, etc

□ User-defined functions and PARALLEL SAFE

To indicate whether it is possible to perform parallel processing for user-defined functions, can be

used PARALLEL SAFE clause or PARALLEL UNSAFE clause in the CREATE FUNCTION

statement or ALTER FUNCTION statement. The default is PARALLEL UNSAFE.

postgres=> EXPLAIN SELECT COUNT(*) FROM data1 WHERE c1=10 ;

 QUERY PLAN

--

 Aggregate (cost=29314.08..29314.09 rows=1 width=8)

 -> Gather (cost=1000.00..29314.07 rows=3 width=0)

 Workers Planned: 3

 -> Parallel Seq Scan on data1 (cost=0.00..28313.78 rows=1 width=0)

 Filter: (c1 = '10'::numeric)

(5 rows)

postgres=> EXPLAIN SELECT COUNT(*) FROM data1 WHERE c1=currval('seq1') ;

 QUERY PLAN

 Aggregate (cost=68717.01..68717.02 rows=1 width=8)

 -> Seq Scan on data1 (cost=0.00..68717.00 rows=3 width=0)

 Filter: (c1 = (currval('seq1'::regclass))::numeric)

(3 rows)

212

© 2013-2017 Hewlett-Packard Enterprise.

Example 188 User-defined functions and PARALLEL SAFE

Determine Parallel Safe or Parallel Unsafe of user-defined function, the function author must

determine. Even if Parallel Unsafe function is called in the Parallel Safe specified in the user-defined

function, the optimizer is likely to create an execution plan for a parallel query. Nextval function, etc.,

some standard functions, and it raises an error when detecting the parallel query is being performed.

In the example below, I create an unsafe1 a Parallel Unsafe function. In addition, it has created a

Parallel Safe function safe1 to run the Parallel Unsafe function.

postgres=> CREATE FUNCTION add(integer, integer) RETURNS integer

postgres-> AS 'select $1 + $2;'

postgres-> LANGUAGE SQL IMMUTABLE RETURNS NULL ON NULL INPUT ;

CREATE FUNCTION

postgres=> SELECT proname, proparallel FROM pg_proc WHERE proname = 'add' ;

 proname | proparallel

---------+-------------

 add | u

(1 row)

postgres=> ALTER FUNCTION add(integer, integer) PARALLEL SAFE ;

ALTER FUNCTION

postgres=> SELECT proname, proparallel FROM pg_proc WHERE proname='add' ;

 proname | proparallel

---------+-------------

 add | s

(1 row)

213

© 2013-2017 Hewlett-Packard Enterprise.

Example 189 Parallel Safe function to run the Parallel Unsafe function

In the example below, the result of the execution of the SELECT statement, including the Parallel

Safe function safe1, you can see that the parallel query is executed.

postgres=> CREATE FUNCTION unsafe1() RETURNS numeric AS $$

postgres$> BEGIN RETURN 100; END;

postgres$> $$ PARALLEL UNSAFE LANGUAGE plpgsql ;

CREATE FUNCTION

postgres=>

postgres=> CREATE FUNCTION safe1() RETURNS numeric AS $$

BEGIN RETURN unsafe1(); END;

$$ PARALLEL SAFE LANGUAGE plpgsql ;

CREATE FUNCTION

postgres=>

postgres=> SELECT proname, proparallel FROM pg_proc WHERE proname like

'%safe%' ;

 proname | proparallel

---------------+-------------

 unsafe1 | u

 unsafe1insafe | s

(2 rows)

214

© 2013-2017 Hewlett-Packard Enterprise.

Example 190 Execution plan for Parallel safe function witch include Parallel Unsafe function

6.9.4 Calculation of the degree of parallelism
The degree of parallelism will be calculated based on the size of the search target of the table. The

reference size of the table is the parameter min_parallel_relation_size table, will increase the degree

of parallelism for each three times. The upper limit of the degree of parallelism is determined within

a range not exceeding the parameter max_parallel_workers_per_gather or parameter

max_worker_processes. The actual calculation process has been described in the

create_plain_partial_paths function in the source code src/backend/optimizer/path/allpaths.c.

postgres=> EXPLAIN ANALYZE VERBOSE SELECT * FROM data1 WHERE c1 = safe1() ;

 QUERY PLAN

 Gather (cost=1000.00..115781.10 rows=1 width=11)

(actual time=1.354..2890.075 rows=1 loops=1)

 Output: c1, c2

 Workers Planned: 2

 Workers Launched: 2

 -> Parallel Seq Scan on public.data1 (cost=0.00..114781.00 rows=0 width=11)

(actual time=1904.255..2866.980 rows=0 loops=3)

 Output: c1, c2

 Filter: (data1.c1 = unsafe1insafe())

 Rows Removed by Filter: 333333

 Worker 0: actual time=2844.205..2844.205 rows=0 loops=1

 Worker 1: actual time=2867.581..2867.581 rows=0 loops=1

 Planning time: 0.083 ms

 Execution time: 2890.790 ms

(12 rows)

215

© 2013-2017 Hewlett-Packard Enterprise.

Example 191 A part of create_plain_partial_paths function

 int parallel_threshold;

 /*

 * If this relation is too small to be worth a parallel scan, just

 * return without doing anything ... unless it's an inheritance child.

 * In that case, we want to generate a parallel path here anyway. It

 * might not be worthwhile just for this relation, but when combined

 * with all of its inheritance siblings it may well pay off.

 */

 if (rel->pages < (BlockNumber) min_parallel_relation_size &&

 rel->reloptkind == RELOPT_BASEREL)

 return;

 /*

 * Select the number of workers based on the log of the size of the

 * relation. This probably needs to be a good deal more

 * sophisticated, but we need something here for now. Note that the

 * upper limit of the min_parallel_relation_size GUC is chosen to

 * prevent overflow here.

 */

 parallel_workers = 1;

 parallel_threshold = Max(min_parallel_relation_size, 1);

 while (rel->pages >= (BlockNumber) (parallel_threshold * 3))

 {

 parallel_workers++;

 parallel_threshold *= 3;

 if (parallel_threshold > INT_MAX / 3)

 break; /* avoid overflow */

 }

216

© 2013-2017 Hewlett-Packard Enterprise.

7. Privileges and object creation

7.1 Object Privileges
Regarding the object privileges of PostgreSQL, the operations, executable not by the owner of the

object, but by the general user (has login priviledge only), are summarized here.

7.1.1 The owner of the tablespace
It was verified whether the object can be created if the owner of the connected users and table space

is different. From the following results, we found that the object can be created when the database

owned by a connection user is created in the tablespace.

Table 76 Connection user and the owner of the table are different

Operation No Database Exists Database

CREATE TABLE Error OK

CREATE INDEX Error OK

7.1.2 The owner of the database
It was verified whether the object can be created in a "public" schema if the database owner and

connected user are different. As you see the following table, the major tables other than schmema can

be created even if the owner of the database is different. If you want to prohibit access to the "public"

schema, all the access rights should be stripped once from public role, and only the required

permissions must be added to the appropriate user.

Table 77 Object creation for pg_default table space (postgres user-owned)

Operation Executability

CREATE TABLE OK

CREATE INDEX OK

CREATE SEQUENCE OK

CREATE SCHEMA Error

CREATE FUNCTION OK

CREATE TYPE OK

217

© 2013-2017 Hewlett-Packard Enterprise.

7.2 Row Level Security

7.2.1 What’s Row Level Security
In PostgreSQL, the privilege to access to tables and columns is specified by GRANT statement. This

style is available even in PostgreSQL 9.5, and furthermore the function of Row Level Security is added.

Row Level Security is a feature that allows you to limit the tuples (records) with tuple level, which

were allowed in the GRANT statement. In order to use the access restriction by Row Level Security,

create an object called POLICY.

Figure 18 Access Control by Row Level Security

7.2.2 Preparation
In order to use Row Level Security, execute the ALTER TABLE ENABLE ROW LEVEL

SECURITY statement to the table to be restricted by policy. By default Row Level Security setting of

the table is disabled. To disable the setting for the table, run the ALTER TABLE DISABLE ROW

LEVEL SECURITY statement.

Permission by GRANT
statement

Permission by
POLICY object

218

© 2013-2017 Hewlett-Packard Enterprise.

Example 192 Enable Row Level Security to the table

7.2.3 Create POLICY object
To specify access privileges for a table, create the POLICY object. POLICY is created using the

CREATE POLICY statement. General users can create POLICY.

Syntax 7 CREATE POLICY

postgres=> ALTER TABLE poltbl1 ENABLE ROW LEVEL SECURITY ;

ALTER TABLE

postgres=> \d+ poltbl1

 Table "public.poltbl2"

 Column | Type | Modifiers | Storage | Stats target | Description

--------+-----------------------+-----------+----------+--------------+------------

 c1 | numeric | | main | |

 c2 | character varying(10) | | extended | |

 uname | character varying(10) | | extended | |

Policies (Row Security Enabled): (None)

CREATE POLICY policy_name ON table_name

[FOR { ALL | SELECT | INSERT | UPDATE | DELETE }]

[TO { roles | PUBLIC, …}]

USING (condition)

[WITH CHECK (check_condition)]

219

© 2013-2017 Hewlett-Packard Enterprise.

Table 78 Syntax for CREATE POLICY statement

Clause Description

policy_name Specify the policy name

ON Specify the table name to which the policy is applied

FOR Operation name to apply the policy or ALL

TO Target role name to allow policy or PUBLIC

USING Specify conditions for permission of the access to the tuple (Same syntax as

WHERE clause). Only the tuples in which the condition specified by USING

clause becomes TRUE is returned to the user

WITH CHECK Specify the conditions for rows that can be updated by the UPDATE

statement. You can not specify the CHECK clause in the policy for the

SELECT statement

In the example below, the POLICY to the table poltbl1 is created. Since TO clause is omitted, the

subject is all users (PUBLIC), the operation is executed to all the SQL (FOR ALL), and the

performed tuple is the one whose "uname" column’s value is the same as the current username

(current_user function).

Example 193 CREATE POLICY statement

Information of the created policy can be checked from pg_policy catalog. The information of the

table that has been set a policy can be checked from pg_policies catalog.

postgres=> CREATE POLICY pol1 ON poltbl1 FOR ALL USING (uname = current_user) ;

CREATE POLICY

postgres=> \d+ poltbl1

 Table "public.poltbl2"

Column | Type | Modifiers | Storage | Stats target | Description

--------+-----------------------+-----------+----------+--------------+------------

 c1 | numeric | | main | |

 c2 | character varying(10) | | extended | |

 uname | character varying(10) | | extended | |

Policies:

 POLICY "pol1" FOR ALL

 USING ((uname)::name = "current_user"())

220

© 2013-2017 Hewlett-Packard Enterprise.

Following example verifies the effect of the policy:

 User "user1", who is the owner of the table poltbl1, stores 3 records (2-12 lines).

 Although table tblpol1 is searched with the privilege of user "user2", only one record whose

"uname" column’s value is "user2" is referenced (15-19 lines).

 Though the user was trying to change the value of "uname" column, UPDATE statement

failed because of the deviation of the condition specified in USING clause of the CREATE

POLICY statement (20-21 lines).

Example 194 Effect of the policy

$ psql -U user1

postgres=> INSERT INTO tblpol1 VALUES (100, 'Val100', 'user1') ;

INSERT 0 1

postgres=> INSERT INTO tblpol1 VALUES (200, 'Val200', 'user2') ;

INSERT 0 1

postgres=> INSERT INTO tblpol1 VALUES (300, 'Val300', 'user3') ;

INSERT 0 1

postgres=> SELECT COUNT(*) FROM tblpol1 ;

 count

 3

(1 row)

$ psql -U user2

postgres=> SELECT * FROM poltbl1 ;

c1 | c2 | uname

-----+--------+-------

 200 | val200 | user2

(1 row)

postgres=> UPDATE poltbl1 SET uname='user3' ;

ERROR: new row violates row level security policy for "poltbl1"

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

CREATE POLICY statement, which creates a policy, does not result in an error when executed

to the table which is not specified ENABLE ROW LEVEL SECURITY clause. In this case,

ROW LEVEL SECURITY feature is not enabled for the corresponding table; only the

authorization by the GRANT statement is enabled.

221

© 2013-2017 Hewlett-Packard Enterprise.

To change or delete policy setting is performed in ALTER POLICY statement or DROP POLICY

statement, respectively. When specified more than one policy for a table, the record that matches the

logical OR is taken.

Example 195 Effect of multiple policy

7.2.4 Parameter Settings
Feature of Row Level Security is controlled by the parameter row_security. It can take the following

values.

$ psql -U user1

postgres=> CREATE TABLE pol1(c1 NUMERIC, c2 NUMERIC) ;

CREATE TABLE

postgres=> ALTER TABLE pol1 ENABLE ROW LEVEL SECURITY ;

ALTER TABLE

postgres=> CREATE POLICY p1_pol1 ON pol1 FOR ALL USING (c1 = 100) ;

CREATE POLICY

postgres=> CREATE POLICY p2_pol1 ON pol1 FOR ALL USING (c2 = 100) ;

CREATE POLICY

postgres=> GRANT SELECT ON pol1 TO user2 ;

GRANT

$ psql -U user2

postgres=> EXPLAIN SELECT * FROM pol1 ;

 QUERY PLAN

--

 Seq Scan on pol1 (cost=0.00..23.20 rows=9 width=64)

 Filter: ((c2 = '100'::numeric) OR (c1 = '100'::numeric))

(2 rows)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

222

© 2013-2017 Hewlett-Packard Enterprise.

Table 79 Choices for Parameter row_security

Value Description

on Enable the feature of Row Level Security. This is the default value.

off Disable the feature of Row Level Security. Since the access control by POLICY

disabled, only the permission by GRANT statement is enabled.

force It will force the feature of Row Level Security. The permission of the POLICY is

enforced to the table to which the POLICY is set. Therefore, even the owner of the table

will not be able to access the data with policy violations.

□ User Privileges

Superuser with BYPASSRLS privilege will be able to bypass the policy setting. General user who

has only BYPASSRLS privilege cannot ignore the POLICY. NOBYPASSRLS is specified as the

default of CREATE USER statement.

223

© 2013-2017 Hewlett-Packard Enterprise.

8. Utilities

8.1 Utility usage
This chapter explains how to use the distinctive command.

8.1.1 Pg_basebackup command
Pg_basebackup13 command was developed in order to create a complete copy of the database cluster.

It executes the same process as online backup internally. On using this command, note the following

points.

 With the -x option, conduct a log switch after the backup completion.

 Table space directory other than the database cluster is stored in the same path. In order to

change the path, old and new path must be specified in --tablespace-mapping parameters (it

can be specified from PostgreSQL 9.4).

 Backup destination directory must be left empty.

 WAL writing directory is {PGDATA}/pg_xlog. If you want to specify a different directory,

specify the --xlogdir parameters (can be specified from PostgreSQL 9.4).

Example 196 pg_basebackup command execution

□ Data transfer operation

Processing of pg_basebackup command is mostly executed within wal sender process on the

destination instance. Wal sender process does the following processing.

 Execute pg_start_backup function

 Transfer of files in the database cluster

 External table space entity search and transfer of files

 Execute pg_stop_backup function

 In case of WAL transfer setting, transfer of WAL files

13 Online Manual https://www.postgresql.org/docs/9.6/static/app-pgbasebackup.html

$ pg_basebackup -D back -h hostsrc1 -p 5432 -x -v

Password: {PASSWORD}

transaction log start point: 0/7E000020

transaction log end point: 0/7E0000A8

pg_basebackup: base backup completed

$

https://www.postgresql.org/docs/9.6/static/app-pgbasebackup.html

224

© 2013-2017 Hewlett-Packard Enterprise.

Data of the file to be backed up is loaded into each 32 KB14, and sent to the client.

□ Copied file

Pg_basebackup command performs a copy of the database cluster, but it does not mean to copy all

of the files. The following files (and directories) are different from the source of the database cluster.

Table 80 pg_basebackup command and difference of the source of the

Files/Directories Difference Note

backup_label Create New

backup_label.old Create New Former backup_label file

pg_replslot Not copied Replication slot

pg_stat_tmp Not copied

pg_xlog Not copied If -x is not specified

Some are not copied If -x is specified

postmaster.opts Not copied

postmaster.pid Not copied

PostgreSQL unmanaged files for

the external table in the area

Not copied

□ Restriction of transfer rate

If you specify the --max-rate parameter when executing the pg_basebackup command, you can limit

the network transfer rate per unit time (PostgreSQL 9.4 new feature). Control of the transfer amount

is executed within wal sender process. Each time the amount of data transfer exceeds 1/8 of the number

of the byte specified in the parameter, waiting by latch timeout is performed to suppress the amount

of data transferred within a certain period of time.

□ Recovery.conf file

If you specify the -R parameter to pg_basebackup command, recovery.conf file is automatically

created. The created recovery.conf file contains only primary_conninfo parameters and standby_mode

= 'on'. Even if it recovery.conf file already exists in the backup source of the database in the cluster (in

case of getting the backup from the slave instance), specifying the -R parameter creates a new

recovery.conf file. If -R parameter is not specified, existing recovery.conf files are copied to the backup

destination directory.

14 Defined by TAR_SEND_SIZE in src/backend/replication/basebackup.c

225

© 2013-2017 Hewlett-Packard Enterprise.

□ Copy of Replication Slot

In pg_basebackup command, slot information that was created in

pg_create_physical_replication_slot function is not copied. Therefore, when pg_basebackup

command is completed, the copy destination {PGDATA}/pg_replslot directory will be empty.

□ User-created files and directories

The behavior when a directory and a file unrelated to PostgreSQL are created in the database cluster

is verified.

Example 197 Copy of the user-created files (in database clusters)

It is confirmed that directories and files created in the database cluster and not managed by

PostgreSQL are backed up by pg_basebackup command. Then confirmed whether the directory / file

that was created on a tablespace that has been created in the CREATE TABLESPACE statement is

copied or not.

$ touch data/test_file.txt

$ mkdir data/test_dir/

$ touch data/test_dir/test_file.txt

$ pg_basebackup -D back -p 5432 -v -x

transaction log start point: 0/2000028 on timeline 1

transaction log end point: 0/20000C0

pg_basebackup: base backup completed

$ ls back/test*

back/test_file.txt

back/test_dir:

test_file.txt

226

© 2013-2017 Hewlett-Packard Enterprise.

Example 198 Copy of the user-created file (table space)

As seen in the above example, a user-created file that is created within a table space, is confirmed to

be not copied.

□ Behavior of --xlog-method parameter

The --xlog-method (or -X) parameter is used to specify the method of transfer WAL file. If this

parameter specified, --xlog (or -x) parameter can not be specified. But WAL file is transferred to the

backup destination from the source instance. If you specify a --xlog-method = streaming, it will launch

two wal sender process at the same time in the PostgreSQL instance.

Table 81 Process to start by pg_basebackup command

Process name Description

postgres: wal sender process … sending backup … Process for file transfer

postgres: wal sender process … streaming … Process for WAL transfer

8.1.2 Pg_archivecleanup command
Pg_archivecleanup15 command deletes archived log files that are no longer needed because of the

backup completion.

Usually it is used as a parameter value of archive_cleanup_command in a recovery.conf file under

15 Online Manual https://www.postgresql.org/docs/9.6/static/pgarchivecleanup.html

$ mkdir ts1

postgres=# CREATE TABLESPACE ts1 OWNER demo LOCATION '/usr/local/pgsql/ts1' ;

CREATE TABLESPACE

$ touch ts1/test_file.txt

$ mkdir ts1/test_dir/

$ touch ts1/test_dir/test_file.txt

$ pg_basebackup -D back -p 5432 -v –x

--tablespace-mapping=/usr/local/pgsql/ts1=/usr/local/pgsql/back_ts1

transaction log start point: 0/2000028 on timeline 1

transaction log end point: 0/20000C0

pg_basebackup: base backup completed

$ ls back_ts1/

PG_9.6_201608131

https://www.postgresql.org/docs/9.6/static/pgarchivecleanup.html

227

© 2013-2017 Hewlett-Packard Enterprise.

the streaming at the replication environment. Specify the archive log output directory to the first

parameter, and "% r" indicating the final WAL file to the second parameter to the second parameter.

Example 199 Specify in a recovery.conf file

Pg_archivecleanup command can also be used in a stand-alone environment. To the second parameter,

specify the label file created in the online backup. By creating a program such as following example,

the final label file can be obtained.

Example 200 pg_archivecleanup command execution script

8.1.3 Psql command
Psql command16 is a client tool to run the interactive SQL statements. Environment variables used

16 Online Manual https://www.postgresql.org/docs/9.6/static/app-psql.html

archive_cleanup_command = 'pg_archivecleanup /usr/local/pgsql/archive %r'

#! /bin/sh

export PATH=/usr/local/pgsql/bin:${PATH}

ARCHDIR=/usr/local/pgsql/archive

LASTWALPATH=`/bin/ls $ARCHDIR/*.backup | /bin/sort –r | /usr/bin/head -1`

if [$LASTWALPATH = '']; then

 echo 'NO label file found.'

 exit 1

fi

LASTWALFILE=`/bin/basename $LASTWALPATH`

pg_archivecleanup $ARCHDIR $LASTWALFILE

stat=$?

echo 'Archivelog cleanup complete'

exit $stat

https://www.postgresql.org/docs/9.6/static/app-psql.html

228

© 2013-2017 Hewlett-Packard Enterprise.

by psql command is as follows.

Table 82 Environment variables used by psql command

Environment Variable Description Default value

COLUMNS New line width limits

Default value of \pset columns

Calculated from the width of the

terminal

PAGER Pager command name Under the Cygwin environment

"less", otherwise "more"

PGCLIENTENCODING Client encoding auto

PGDATABASE Default database name OS username

PGHOST Default host name localhost

PGPORT17 Default port number 5,432

PGUSER Default database username OS username

PSQL_EDITOR

EDITOR

VISUAL

Editor name to be used in the \e

command. Search from the top of

the list.

Linux/Unix: "vi"

Windows: "notepad.exe"

PSQL_EDITOR_LINEN

UMBER_ARG

Command for passing a line number

to the editor

Linux/UNIX: "+",

Windows: no setting

COMSPEC Command shell for \! (Windows) cmd.exe

SHELL Command shell for \! (Linux/UNIX) /bin/sh

PSQL_HISTORY History save file Linux/UNIX:

 {HOME}/.psql_history

Windows:

 {HOME}\psql_history

PSQLRC The path for the initialization

command file

Linux/UNIX:

 {HOME}/.psqlrc

Windows:

 {HOME}\psqlrc.conf

TMPDIR Temporary directory for file editing Linux/UNIX: /tmp

Windows:

 result of GetTempPath API

PGPASSFILE Password file Linux: $HOME/.pgpass

Windows: %APPDATA%\postgr

esql\pgpass.conf

17 It is also used as the default value for the instance startup waiting for a connection port number.

229

© 2013-2017 Hewlett-Packard Enterprise.

8.1.4 Pg_resetxlog command
Pg_resetxlog18 command performs a re-creation of the WAL file. This command can not be executed

during instance startup. As in the manual, this command checks the presence of

{PGDATA}/postmaster.pid file. It checks only the existence of the file, and it does not mean to check

the activation of the instance.

Pg_resetxlog command executes the following processing.

1. Check the command option

2. Check the database cluster and move to directory

3. Presence check of postmaster.pid file

4. Read the pg_control file

a. If cannot read, exit program

b. Check the version number and CRC

5. Predict the correct value if there is a mismatch in the pg_control file

6. Search the final WAL files from pg_xlog directory

7. Check whether the previous instance is successfully completed (DB_SHUTDOWNED (1));

if it does not complete successfully, end unless the -f option is specified.

8. Delete and re-create the pg_control file

9. Delete WAL file

10. Delete file in the archive_status directory

11. Create a new WAL file

The following is a comparative example of the output result of pg_controldata command before and

after the execution of pg_resetxlog command. Only the different parts are shown.

18 Online Manual https://www.postgresql.org/docs/9.6/static/app-pgresetxlog.html

https://www.postgresql.org/docs/9.6/static/app-pgresetxlog.html

230

© 2013-2017 Hewlett-Packard Enterprise.

Table 83 Comparison of pg_controldata command

Output item Before pg_resetxlog command After pg_resetxlog command

pg_control last modified Fri Feb 11 15:22:13 2017 Fri Feb 11 16:02:40 2017

Latest checkpoint location 2/A4000028 2/AC000028

Prior checkpoint location 2/A3002D20 0/0

Latest checkpoint's REDO

location

2/A4000028 2/AC000028

Latest checkpoint's REDO

WAL file

0000000100000002000000A4 0000000100000002000000AC

Time of latest checkpoint Fri Feb 11 15:22:01 2017 Fri Feb 11 16:02:26 2017

Backup start location 0/E1000028 0/0

8.1.5 Pg_rewind command
Pg_rewind19 command was added in PostgreSQL 9.5.

□ Overview

Pg_rewind command is a tool to build a replication environment. Unlike pg_basebackup command,

it can perform a synchronization for existing database cluster. It is assumed the resynchronization

between promoted slave instance and the old master instance.

□ Parameters

Following parametes can be specified to pg_rewind command.

19 Online Manual https://www.postgresql.org/docs/9.6/static/app-pgrewind.html

https://www.postgresql.org/docs/9.6/static/app-pgrewind.html

231

© 2013-2017 Hewlett-Packard Enterprise.

Table 84 Command parameters

Parameter name Descrption

-D / --target-pgdata Directory of the database cluster to be performed the update

--source-pgdata Source directory of data acquisition

--source-server Connection information of data acquisition source (remote instance)

-P / --progress Output of the execution status

-n / --dry-run Execute run simulation

--debug Display debugging information

-V / --version Display version information

-? / --help Display how to use

□ Conditions

In order to execute the pg_rewind command, there are some conditions. Pg_rewind command checks

the conditions to execute from the contents of the pg_control file of source and target.

First, it is necessary to set the PostgreSQL instance’s parameter wal_log_hints to "on" (default value

"off"), or enable the function of checksum, parameter full_page_writes should also be set to "on" (the

default value "on").

Example 201 Error messages on the parameter settings

The targeted instance of the database cluster must be stopped normally.

Example 202 The error message during target instance startup

Copy processing of the data uses the connection to wal sender process similar to the pg_basebackup

command. Pg_hba.conf file setting of the destination (data provider) instance, and setting of the

$ pg_rewind --source-server='host=remhost1 port=5432 user=postgres'

 --target-pgdata=data -P

connected to remote server

target server need to use either data checksums or "wal_log_hints = on"

Failure, exiting

$ pg_rewind --source-server='host=remhost1 port=5432 user=postgres'

 --target-pgdata=data –P

target server must be shut down cleanly

Failure, exiting

232

© 2013-2017 Hewlett-Packard Enterprise.

max_wal_senders parameter are necessary.

□ Execution procedure

In order to run pg_rewind, following procedure should be done. In the example below, pg_rewind

connects to the slave instance of performing the promotion, and the old master instance is set to the

new slave instance.

1. Parameter settings

Set parameters for the current master instance and pg_hba.conf file. Reload the file information, if

necessary.

2. Stop target instance

Stop the synchronization instance (the old master).

3. Execute pg_rewind command

In the old master instance (which updates the data) run the pg_rewind command. First run with the

-n parameter for test, and after the test, run without the -n parameter.

Example 203 Execute pg_rewind -n command

Example 204 Execute pg_rewind command

4. Edit recovery.conf file

Pg_rewind command does not create recovery.conf file in the update destination database cluster. For

this reason, recovery.conf file is created for the new slave instance. Specify the replication slot name

$ pg_rewind --source-server='host=remhost1 port=5432 user=postgres'

 --target-pgdata=data –n

The servers diverged at WAL position 0/50000D0 on timeline 1.

Rewinding from last common checkpoint at 0/5000028 on timeline 1

Done!

$ pg_rewind --source-server='host=remhost1 port=5432 user=postgres'

 --target-pgdata=data

The servers diverged at WAL position 0/50000D0 on timeline 1.

Rewinding from last common checkpoint at 0/5000028 on timeline 1

Done!

233

© 2013-2017 Hewlett-Packard Enterprise.

created in the previous section.

5. Edit postgresql.conf file

By the execution of pg_rewind command, postgresql.conf file has been copied from the remote host

and overwritten. Edit the parameters as needed.

6. Start new slave instance

Starup the new slave instance.

□ Command exit status

Pg_rewind command exits with 0 when the process is completed successfully, or exits with 1 if it

fails.

8.1.6 Vacuumdb command
Vacuumdb command executes VACUUM processing forcibly. It can be specified the --jobs

parameters in order to actively use the multiple cores. With the --jobs parameter, specify the number

of jobs to be processed in parallel. Here, the detailed implementation of --jobs parameters is examined.

The number of jobs is more than 1, less than "macro FD_SETSIZE - 1" (in Red Hat Enterprise Linux

7 1,023 or less).

Example 205 Upper and lower limits of the --jobs parameters

□ --jobs parameter and the number of sessions

If a number is specified to the --jobs parameter, the same number of sessions as specified in the

parameter created. If you perform a VACUUM for all database (--all specified) is, each database. If

perform a VACUUM on a single database, do the processing in parallel to each table. The default value

for this parameter is 1, and it is the same behavior as previous versions. In the example below, as

--jobs=10 is specified, 10 postgres processes started.

$ vacuumdb --jobs=-1

vacuumdb: number of parallel "jobs" must be at least 1

$ vacuumdb --jobs=1025

vacuumdb: too many parallel jobs requested (maximum: 1023)

234

© 2013-2017 Hewlett-Packard Enterprise.

Example 206 Specifying the --jobs parameter and session

If the value specified in the --jobs parameter is abobe the number of --table parameters, the upper

limit of the degree of parallelism become the number of tables. Since PostgreSQL max_connections

parameter is not considered in the calculation of the number of sessions, the excess of the number of

sessions is detected, "FATAL: sorry, too many clients already" error will occur.

$ vacuumdb --jobs=10 -d demodb &

vacuumdb: vacuuming database "demodb"

$ ps -ef|grep postgres

postgres 14539 1 0 10:59 pts/2 00:00:00 /usr/local/pgsql/bin/postgres -D data

postgres 14540 14539 0 10:59 ? 00:00:00 postgres: logger process

postgres 14542 14539 0 10:59 ? 00:00:00 postgres: checkpointer process

postgres 14543 14539 0 10:59 ? 00:00:00 postgres: writer process

postgres 14544 14539 0 10:59 ? 00:00:00 postgres: wal writer process

postgres 14545 14539 0 10:59 ? 00:00:00 postgres: stats collector process

postgres 14569 14539 6 11:00 ? 00:00:00 postgres: postgres demodb [local] VACUUM

postgres 14570 14539 0 11:00 ? 00:00:00 postgres: postgres demodb [local] idle

postgres 14571 14539 5 11:00 ? 00:00:00 postgres: postgres demodb [local] VACUUM

postgres 14572 14539 7 11:00 ? 00:00:00 postgres: postgres demodb [local] VACUUM

postgres 14573 14539 0 11:00 ? 00:00:00 postgres: postgres demodb [local] idle

postgres 14574 14539 0 11:00 ? 00:00:00 postgres: postgres demodb [local] idle

postgres 14575 14539 9 11:00 ? 00:00:00 postgres: postgres demodb [local] VACUUM

postgres 14576 14539 5 11:00 ? 00:00:00 postgres: postgres demodb [local] VACUUM

postgres 14577 14539 0 11:00 ? 00:00:00 postgres: postgres demodb [local] idle

postgres 14578 14539 1 11:00 ? 00:00:00 postgres: postgres demodb [local] idle

235

© 2013-2017 Hewlett-Packard Enterprise.

8.2 Exit status of Server/Client Applications
 The exit status of the various utilities that accompany with PostgreSQL is confirmed here.

8.2.1 Pg_ctl command
Pg_ctl command returns 0 if the operation was successful. If –w option is not specified at the instance

startup (pg_ctl start) it exits with 0 at the time the background processing completes successfully by

the system(3) function, therefore it is not mean the successful completion of the instance startup.

Table 85 Exit status of pg_ctl command

Status Code Description Note

0 Operation succeeds

1 Operation failes

Output a message to the standard error (if -l option is specified, to the log

file).

3 The instance is not running at the time of pg_ctl status command execution

4 The database cluster does not exist when pg_ctl status command execution 9.4-

8.2.2 Psql command
Psql command returns 0 if the operation was successful. In case of specifying the SQL statement

with the -c option, it returns 1 if the operation fails. However, in case of specifying the SQL statement

with the -f option, it returns 0 if the operation fails. The behavior of "-f" option is changed by setting

the ON_ERROR_STOP attribute to true (or 1). ON_ERROR_STOP attribute is set either by running

\set command, or specifiying the --set option of psql command.

Table 86 Exit status of psql command

Status Code Description

0 Operation succeeds

1 Operation fails

2 Connection failure or flex-related errors

3 An error occurs after running the \set ON_ERROR_STOP true

236

© 2013-2017 Hewlett-Packard Enterprise.

Example 207 Error detection of psql command

$ psql -c 'SELECT * FROM notexists'

Password: {PASSWORD}

ERROR: relation "notexist" does not exist

LINE 1: SELECT * FROM notexist

 ^

$ echo $?

1

$ cat error.sql

SELECT * FROM notexists ;

$ psql -f error.sql

Password: {PASSWORD}

psql:error.sql:1: ERROR: relation "notexists" does not exist

LINE 1: SELECT * FROM notexists ;

 ^

$ echo $?

0

$ psql -f error.sql--set=ON_ERROR_STOP=true

Password: {PASSWORD}

psql:error.sql:1: ERROR: relation "notexists" does not exist

LINE 1: SELECT * FROM notexists ;

$ echo $?

3

$ cat stop.sql

\set ON_ERROR_STOP true

SELECT * FROM notexists ;

$ psql -f error.sql

Password: {PASSWORD}

psql:error.sql:1: ERROR: relation "notexists" does not exist

LINE 1: SELECT * FROM notexists ;

 ^

$ echo $?

3

237

© 2013-2017 Hewlett-Packard Enterprise.

8.2.3 Pg_basebackup command
Pg_basebackup command returns 0 if the operation was successful. When processing failed, it

outputs a message to the standard output, then exits with 1.

Table 87 Exit status of pg_basebackup command

Status Code Description

0 Operation succeeds

1 Operation fails

8.2.4 Pg_archivecleanup command
Pg_archivecleanup command returns 0 if the operation was successful. When the operation failed, it

outputs a message to the standard error, then exits with 2.

Table 88 Exit status of pg_archivecleanup command

Status Code Description

0 Operation succeeds (or output help message)

2 Operation fails

8.2.5 Initdb command
Initdb command returns 0 if the operation was successful. When the operation failed, it outputs a

message to the standard output, then exits with 1.

Table 89 Exit status of initdb command

Status Code Description

0 Operation succeeds

1 Operation fails

8.2.6 Pg_isready command
Pg_isready command checks the parameters, and returns 3 if an invalid parameter is specified. Then

it executes the PQpingParams function (src/interfaces/libpq/fe-connect.c) and ends with the return

value of the function. The following values are returned.

238

© 2013-2017 Hewlett-Packard Enterprise.

Table 90 Exit status of pg_isready command

Status Code Description Remark

0 Instance is working and possible to accept

connection

PQPING_OK

1 Instance is working but cannot accpept the

connection

PQPING_REJECT

2 Communication to the instance disabled PQPING_NO_RESPONSE

3 Parameter or connection string incorrect PQPING_NO_ATTEMPT

The macros of remarks are defined in the header (src/interfaces/libpq/fe-connect.h).

8.2.7 Pg_receivexlog command
Pg_receivexlog command returns 0 if the operation was successful. When the operation failed, it

outputs a message to the standard output, then exits with 1.

Table 91 Exit status of pg_receivexlog command

Status Code Description Note

0 Operation succeeds Status is zero in the following case:

 Receive a SIGINT signal

 Specified --help parameter

 Specified --version parameter

1 Operation fails

239

© 2013-2017 Hewlett-Packard Enterprise.

9. System Configuration

9.1 Default Value of Parameters
Parameters to be used in the PostgreSQL are described in the postgresql.conf file in the database

cluster. The rows which start with '#' are treated as comment. After executing initdb command, the

changed parameters are investigated.

9.1.1 Parameters derived at initdb command execution
Some of the parameters derive the value from the environment variable or setting status of host at

the time of initdb command execution, and set it in the postgresql.conf file.

Table 92 Parameters set at the initdb command execution

Parameter Setting Default Value

max_connections 100 100

shared_buffers 128MB 8MB

dynamic_shared_memory_type posix posix

log_timezone Derived from the environment variable GMT

datestyle Derived from the environment variable ISO,MDY

timezone Derived from the environment variable GMT

lc_messages Derived from the environment variable -

lc_monetary Derived from the environment variable C

lc_numeric Derived from the environment variable C

lc_time Derived from the environment variable C

default_text_search_config Derived from the environment variable 'pg_catalog.simple'

240

© 2013-2017 Hewlett-Packard Enterprise.

9.2 Recommended Setting
In PostgreSQL, many parameters and attributes are defined, and changed it if necessary. It is

recommended to use the following values at first as the initial state.

9.2.1 Locale setting
Recommended parameters value of initdb command to be specified when creating the database

cluster is as follows. It is not recommended to use it unless the locale-related function clearly needed.

In addition, for encoding, UTF-8 is recommended because its character set is large.

Table 93 Recommended parameters of initdb command

Parameter Recommended Value Note

--encoding UTF8 Or EUC_JIS_2004 (for Japanese)

--locale Not specified

--no-locale Specified

--username postgres

--data-checksums Specified Determined by the application requirements

9.2.2 Recommended parameter values
Recommended parameter settings in a typical system is as follows.

241

© 2013-2017 Hewlett-Packard Enterprise.

Table 94 Recommended parameters to be set in the postgresql.conf file

Parameter name Recommended value Note

archive_command 'test ! -f {ARCHIVEDIR}/%f && cp %p

{ARCHIVEDIR}/%f'

archive_mode on

autovacuum_max_workers Greater than or equal to the number of

database

max_wal_size 2GB

checkpoint_timeout 30min

checkpoint_warning 30min

client_encoding utf8

effective_cache_size Amount of installed memory

log_autovacuum_min_duration 60

log_checkpoints on

log_line_prefix '%t %u %d %r '

log_min_duration_statement 30s

log_temp_files on

logging_collector on

maintenance_work_mem 32MB

max_connections Expected number of connections or more

max_wal_senders Slave instance number +1 or more

server_encoding utf8

shared_buffers 1/3 of the amount of installed memory

tcp_keepalives_idle 60

tcp_keepalives_interval 5

tcp_keepalives_count 5

temp_buffers 8MB

timezone Default

wal_buffers 16MB

work_mem 8MB

wal_level replica

max_replication_slots Slave instance number +1 or more Replication

242

© 2013-2017 Hewlett-Packard Enterprise.

10. Streaming Replication

This chapter makes a brief description of streaming replication available from PostgreSQL 9.0.

10.1 Mechanism of streaming replication
PostgreSQL provides the replication feature that synchronize the instances and data running on the

remote host. This section describes the streaming replication feature which is a standard PostgreSQL

replication function.

10.1.1 The streaming replication
In previous version, i.e, older than PostgreSQL 9.0, Slony-I or pgpool-II, an independent tool of

PostgreSQL, was used for the replication of the database. These tools are still effective today, but from

PostgreSQL 9.0, streaming replication capabilities to perform the replication by transferring the

transaction log (WAL) is provided in the standard.

In streaming replication environment, the update process is always run in only one instance. The

updating instance is called the master instance. WAL information generated by the updates to the

database are transferred to the slave instance. Slave instances ensure the uniqueness of multiple

databases by applying the WAL information received from the database. In slave instance, the recovery

of the database is carried out in real time. Slave instance can be started in read-only state, and it will

be able to perform a search (SELECT) on the table. For this reason, it can be used for distributed

search load of the replication environment.

10.1.2 Configuration of streaming replication
As the streaming replication are the feature to update a replica by transferring and applying WAL, it

requires the underlying database for WAL application. PostgreSQL obtains a copy of the database

cluster to be a master, and makes it the base of the replication. When the update transaction for the

master instance occurs, the local WAL is updated. Then wal sender process transfers the WAL

information to the standby instance. In standby instance, wal receiver process receives the WAL

information, and write the WAL in storage. Written WAL is applied to the database cluster

asynchronously, and slave instance is updated.

243

© 2013-2017 Hewlett-Packard Enterprise.

Figure 19 Streaming Replication

□ Cascading replication configuration

The simplest configuration of streaming replication is providing only one slave instance for the

master instance. It is also possible to perform the replication for multiple slaves. In addition, a

cascading replication configuration that regards a slave instance as a master instance of other instance

is also available.

Figure 20 Cascading Replication configuration

 Master Server Slave Server

wal
writer

wal
sender

WAL Buffer

WAL file

wal
receiver

startup
process

WAL file

Master Instance Slave Instance#1

Slave Instance#2

Slave Instance#4 Slave Instance#3

244

© 2013-2017 Hewlett-Packard Enterprise.

10.2 Construction of the replication environment
This section describes how to build a replication environment.

10.2.1 Replication Slot
Streaming replication of PostgreSQL 9.4 or later creates an object called a "Replication Slot" in the

master instance, and the slave instance manages the progress of replication by referring to the slot

name. Replication before PostgreSQL 9.3 kept the WAL files, the number of which was equal to or

less than the number specified in wal_keep_segments parameter, even if the slave instance stopped.

By using the slots, WAL files necessary for the slave are automatically managed, and the feature has

been changed that the master of the WAL is not deleted unless the slave receives. As the structure of

the basic replication is not changed, the setting of parameters for wal sender process and pg_hba.conf

file is still required.

□ Management of replication slot

Replication slots are managed by the following functions. Replication slot in use cannot be deleted.

Streaming replication that is available from the past is called Physical Replication.

Syntax 8 Replication slot creation function

Syntax 9 Replication slot delete function

The maximum number of replication slots that can be created in the database cluster is specified by

the parameter max_replication_slots. As the default value for this parameter is 0, it must be changed

in case of replicating. At instance startup, information related to the replication is expanded on the

shared memory based on the value specified in the parameter max_replication_slots. Created

replication slot information can be seen from pg_replication_slots catalog.

pg_create_physical_replication_slot('{SLOTNAME}')

pg_create_logical_replication_slot('{SLOTNAME}', '{PLUGINNAME}')

pg_drop_replication_slot('{SLOTNAME}')

245

© 2013-2017 Hewlett-Packard Enterprise.

Example 208 Create and verify replication slot

Repliaction slot created by the master instance, is refered from recovery.conf slave instance.

Example 209 Replication slot reference of recovery.conf file

 When the replication succeeds, pg_stat_replication catalog and pg_replication_slots catalog are

shown as follows:

postgres=# SELECT pg_create_physical_replication_slot('slot_1') ;

 pg_create_physical_replication_slot

 (slot_1,)

(1 row)

postgres=# SELECT slot_name, active, active_pid FROM pg_replication_slots ;

 slot_name | active | active_pid

-----------+--------+------------

 slot_1 | f |

(1 row)

primary_slot_name = 'slot_1'

primary_conninfo = 'host=hostmstr1 port=5433 application_name=prim5433'

standby_mode = on

246

© 2013-2017 Hewlett-Packard Enterprise.

Example 210 Checking the replication status

In the pg_stat_replication catalog of PostgreSQL 9.4, backend_xmin column has been added. In the

pg_replication_slots catalog of PostgreSQL 9.5, active_pid column has been added. In slave instance

can be confirmed replication status in pg_stat_wal_receiver catalog.

□ Behavior caused by wrong setting

In the current implementation, replication will succeed even if the primary_slot_name parameter is

not specified to the slave side. If the replication slot is not created on the master side despite the

description of primary_slot_name, following error occurs.

Example 211 Errors in case of specifying a nonexistent replication slot name

If the replication slot is not found, replication cannot be executed, but an instance of the slave side

starts. If a replication slot already used in parameter primary_slot_name is specified in case of starting

multiple slave instance, the following error occurs. In this case, replication cannot be executed,

although the slave instance starts.

Example 212 Errors if specifying a replication slot in use

FATAL: could not start WAL streaming: ERROR: replication slot "slot_1"

does not exist

postgres=# SELECT pid, state, sync_state FROM pg_stat_replication ;

 pid | state | sync_state

-------+-----------+------------

 12847 | streaming | async

(1 row)

postgres=# SELECT slot_name, slot_type, active, active_pid FROM

 pg_replication_slots ;

 slot_name | slot_type | active | active_pid

-----------+-----------+--------+------------

 slot_1 | physical | t | 12847

(1 row)

FATAL: could not start WAL streaming: ERROR: replication slot "slot_1"

is already active

247

© 2013-2017 Hewlett-Packard Enterprise.

□ Entity of the replication slot

Entity of the slot is the directory and file with the same name as the slot name that has been created

in the {PGDATA}/pg_replslot directory.

Example 213 Entity of the slot

In cascaded the replication environment, create a slot in all instances to provide the WAL. Slave

instance is read-only, but you can run the create function slot.

10.2.2 Synchronous and asynchronous
Streaming replication sunchronizes with the slave instance by transferring the WAL information from

the master instance. If the completion of the transaction is notified to the user after confirming that

WALs of both master and slave instances are written, the reliability implroves, though the performance

declines significantly. On the other hand, if WAL to the slave instance is written asynchronously, the

performance improves, however, the written transaction could be lost in case of the abnormal

termination of the master instance before WAL arrival to the slave instance. For this reason, the

streaming replication of PostgreSQL, offers five modes to select the balance of the reliability and

performance. The choice of mode is determined by the parameter synchronous_commit of the master

instance.

$ ls -l data/pg_replslot/

total 4

drwx------. 2 postgres postgres 4096 Feb 11 15:42 slot_1

$ ls -l data/pg_replslot/slot_1/

total 4

-rw-------. 1 postgres postgres 176 Feb 11 15:42 state

248

© 2013-2017 Hewlett-Packard Enterprise.

Table 95 Parameter synchronous_commit setting

Setting Primary WAL Slave WAL Slave Apply Note

on Synchronous Synchronous Asynchronous Synchronization until

storage write

remote_write Synchronous Synchronous Asynchronous Synchronization until

memory write

local Synchronous Asynchronous Asynchronous

off Asynchronous Asynchronous Asynchronous

remote_apply Synchronous Synchronous Synchronous PostgreSQL 9.6-

In order to execute synchronous replication, specify a list of any name (comma delimited) and

number of synchronous replication instances to the parameter synchronous_standby_names of master

instance. For slave instance, specify the same name in application_name items in primary_conninfo

parameters of recovery.conf file.

Figure 21 Synchronous replication setting

Synchronous state of the replication can be found in the sync_state column of pg_stat_replication

catalog. This column may have the following values.

Table 96 sync_state column value

Value Description

sync Synchronous replication

async Asynchronous replication

potential Asynchronous replication at present; it is changed to the synchronous replication if

synchronous replication instance with higher priority stops.

Master instance Slave instance

postgresql.conf

synchronous_standby_names =

 '1 (stdby1, stdby2)'

synchronous_commit =

 on | remote_write

recovery.conf

primary_conninfo =

'application_name=stdby1'

249

© 2013-2017 Hewlett-Packard Enterprise.

Synchronization number of slave instances that replication is carried out is the description the value

at the beginning of the parameter synchronous_standby_names. Priority to the high instance order

synchronous replication is done. Priority is determined by the name specified in the parameter

synchronous_standby_names of the master instance in the order from the left. Current priority can be

found in the sync_priority column of pg_stat_replication catalog. In asynchronous replication, value

of this column is always 0.

When the slave instance with a higher priority returns to the replication environment, instances for

which synchronous replication is performed automatically switch.

□ Behavior at the time of the slave instance stop

In asynchronous replication environment, the master instance will continue to run even if the slave

instance goes down. It is necessary to apply the stopped WAL for the slave instance in order to resume

the replication and catch up the master instance. Under PostgreSQL 9.3, specify the number of WAL

files held in pg_xlog directory in parameter wal_keep_segments. After PostgreSQL 9.4, WAL files not

applied to slave are managed by the replication slot, and are now automatically maintained. In

synchronous replication, when all slave instances is stop, the master instance cannot execute the

transaction and fall into a hung state.

10.2.3 Parameters
Parameters related to replication is as follows.

Table 97 Parameters for master instance

Parameter Description Setting value

wal_level WAL output level hot_standby

archive_mode Archive output mode on (or always)

archive_command Archive output command cp command, etc.

max_wal_senders maximum number of wal sender

process

Slave instance +1 or more

max_replication_slots The maximum number of

replication slots

Slave instance +1 or more

synchronous_commit Synchronization commit Application requirement

synchronous_standby_names Synchronization commit name Set in case of a synchronous

replication

250

© 2013-2017 Hewlett-Packard Enterprise.

For executing SELECT statement to the slave instance, specify the following parameters. If default

value is specified to the parameter hot_standby, it is not able to execute SELECT statement to the

slave instance. This value does not affect even if specified to the master instance, but it can also be set

in advance for the switch over.

Table 98 Parameters for slave instance

Parameter Description Setting

hot_standby Set the slave to referable on

archive_mode Archive log output mode off (or always)

10.2.4 Recovery.conf file
Slave instance receives the WAL information and make a recovery. For this reason, similar to the

recovery of the database, it creates a recovery.conf file in the database cluster. The following

parameters can be specified in recovery.conf faile. Primary_slot_name parameters can be specified

from PostgreSQL 9.4.

Table 99 Recovery.conf file for the slave instance

Parameter name Description Recommended Setting

standby_mode Standby mode on

primary_slot_name Replication slot name Replication slot name on the

primary instance

primary_conninfo Primary instance connection Connection information

restore_command Restore archive log command Copy by scp from primary

instance

recovery_target_timeline Setting for timeline Application Depend

min_recovery_apply_delay Delay time for recovery Setup time

trigger_file Trigger file file name

Example 214 Example of recovery.conf

standby_mode = 'on'

primary_slot_name = 'slot_1’

primary_conninfo = 'host=hostmstr1 port=5432 user=postgres password=secret

 application_name=stdby1'

restore_command = 'scp hostmstr1:/usr/local/pgsql/archive/%f %p'

recovery_target_timeline='latest'

251

© 2013-2017 Hewlett-Packard Enterprise.

□ Trigger_file parameter

Trigger_file parameter is not necessary. If specified, startup process checks the file every 5 seconds,

and if the file exists, slave instance is promoted to master.

□ Primary_conninfo parameter

In the primary_conninfo parameter, describe the information to connect to the master instance.

Multiple description of the parameters is possible, separated by a space "parameter name = value". To

"user" clause, specify a user name that has REPLICATION privileges.

Table 100 Parameters that can be specified in primary_conninfo

Parameter Description Note

service Service name

user Connect user name

password Connect password

connect_timeout Connection timeout (seconds)

dbname Connect database name

host Connect hostname Master instance host name

hostaddr Connect host IP address Master instance IP address

port Connect port number

client_encoding Client encoding

options Options

application_name Application name For Synchronous Replication

□ Restore_command parameter

Specify the command to get the archive log files required for recovery. If the slave instance has been

stopped for a long time, the specified command is executed to get the archive log files needed to

recover. If the slave instance is running on the remote host, files are copied using a command which

does not require a password, such as scp command. %p parameter will be expanded to

{PGDATA}/pg_xlog/RECOVERYXLOG. When the copy is complete, the RECOVERYXLOG file

name is changed, then "{PGDATA}/pg_xlog/archive_status/{WALFILE}.done" file is created.

252

© 2013-2017 Hewlett-Packard Enterprise.

10.3 Failover and Switchover
Failover means the promotion of the slave instance to the master in case of the error in the master

instance; swichover is the replacement the role of the master and the slave instances.

10.3.1 Procedure of switchover
In order to perform the switchover, perform the following steps.

1. Stop the master instance successfully

2. Stop the slave instance successfully

3. Modify the parameters of both instances, if necessary

4. Delete recovery.conf file of the old slave instance

5. Create a recovery.conf file of the old master instance

6. Startup both instances

10.3.2 Pg_ctl promote command
In order to promote the slave instance to the master instance, run the pg_ctl promote command to the

slave instance. From immediately after execution of the command, the slave instance acts as the master

instance. In the following example, pg_ctl promote command is executed on the master side, but it

becomes an error because it is not in standby mode. In the execution of the command to the slave

instance, "server promoting" message is output and it is found that the promotion is executed.

Example 215 pg_ctl promote command

Even after the slave instance was promoted, the former master instance keeps running.

□ Behavior of pg_ctl promote command

PostgreSQL failover is performed by the pg_ctl promote command to the slave instance. Pg_ctl

promote command runs the following processing.

$ pg_ctl -D data.master promote

pg_ctl: cannot promote server; server is not in standby mode

$ echo $?

1

$

$ pg_ctl -D data.slave promote

server promoting

253

© 2013-2017 Hewlett-Packard Enterprise.

 Postmaster process ID acquisition and checking

o Acquisition by performing the analysis of postmaster.pid file

 Check if Single-User Server or not

 Presence check of recovery.conf file

 Create {PGDATA}/promote file

 Send the SIGUSR1 signal to the postmaster process

 Output "server promoting" message

This operation is executed in the do_promote function of the "src/bin/pg_ctl/pg_ctl.c" file.

Postmaster process sends a SIGUSR2 signal to the startup process when it receives a SIGUSR1.

10.3.3 Promoted to the master by the trigger file
 When the file that is specified in the trigger_file parameter of recovery.conf file is created, the slave

instance is promoted to master. When promoted to the master instance is complete, the file is deleted.

Promotion to master does not throw an error if it cannot delete the file. When the master promoted by

the trigger file is output the following log.

Example 216 Log when promoted to master by the trigger file

10.3.4 Log on a failure
The log output in case of the master or slave instance stop is investigated under replication

environment.

□ Stop of the slave instance

When the slave instance stops in smart or fast mode, nothing is output to the master instance log. In

case of the abnormal termination of the slave instance following log is output.

LOG: trigger file found: /tmp/trigger.txt

FATAL: terminating walreceiver process due to administrator command

LOG: invalid record length at 0/6000060: wanted 24, got 0

LOG: redo done at 0/6000028

LOG: selected new timeline ID: 2

LOG: archive recovery complete

LOG: MultiXact member wraparound protections are now enabled

LOG: database system is ready to accept connections

LOG: autovacuum launcher started

254

© 2013-2017 Hewlett-Packard Enterprise.

Example 217 Abnormal termination log of the slave instance

If the slave instance is restarted, following logs are output (in the case of synchronous replication

only).

Example 218 Resuming log of synchronous replication

□ Stop of the master instance

When the master instance is stopped, following log is output to the slave instance.

Example 219 Master instance stop log

When the master instance is restarted, the following log is output.

Example 220 Replication resume log

LOG: standby "stdby_1 " is now the synchronous standby with priority 1

LOG: unexpected EOF on standby connection

FATAL: could not send data to WAL stream: server closed the connection

unexpectedly

 This probably means the server terminated abnormally

 before or while processing the request.

LOG: started streaming WAL from primary at 0/5000000 on timeline 1

255

© 2013-2017 Hewlett-Packard Enterprise.

11. Source code Tree

As PostgreSQL is an open source software, the source is public. Most of the source code of

PostgreSQL written in C language. The source code can be downloaded from PostgreSQL Global

Development Group website (http://www.postgresql.org/ftp/source/).

11.1 Directory Structure

11.1.1 Top directory
Expanding the downloaded source code, postgresql-{VERSION} directory is created. In the created

directory, the following files and directories are also created.

Table 101 Top-level directories and files

File / Directory Description

aclocal.m4 Part of the configure file

config File directory for configure

config.log Configure command execution log

config.status Scripts that configure command generates

configure Configure program

configure.in Skeleton of configure program

contrib Directory for Contrib module

doc Document directory

src Source code directory

COPYRIGHT Copyright information

GNUmakefile Top-level Makefile

GNUmakefile.in Skeleton of Makefile

HISTORY Describes a URL to view the release notes

INSTALL Overview of installation

Makefile Dummy Makefile

README Overview of instructional materials

11.1.2 "src" directory
In the "src" directory, source code is stored in a hierarchical structure.

http://www.postgresql.org/ftp/source/

256

© 2013-2017 Hewlett-Packard Enterprise.

Table 102 Main directory in the "src" directory

Directory Description

backend Source code of the back-end process group

bin Source code of the command such as pg_ctl

common Commonly used source code

include Header files

interfaces Source code of libpq and ECPG library

makefiles Makefile

pl Source code of PL/Perl, PL/pgSQL, PL/Python and PL/tcl

port Source code of libpgport library

template Shell scripts for various OS

test Build tests

timezone Time-zone related information

tools Build tools

tutorial SQL Tutorials

11.2 Build Environment

11.2.1 Configure command parameters
In the case of outputing a Japanese message to the server log, the --enable-nls parameter of the

"configure" command should be enabled. Only English messages are output at the default.

11.2.2 Make command parameters
After the configuration with the configure command, compile and install the binary using make

command. Items that can be specified as the target of the make command are as follows.

Table 103 Main options for the make command

Target Description

- Build PostgreSQL binary

world Build binary, Contrib module and HTML documents, etc.

check Run regression tests

install Install PostgreSQL binary

install-docs Install HTML and man document

install-world Install binary, Contrib module and HTML documents, etc.

clean Remove binary

257

© 2013-2017 Hewlett-Packard Enterprise.

12. Linux Operating System Configuration

This chapter describes the settings that are recommended to change in the Linux environment in order

to run PostgreSQL.

12.1 Kernel Parameters

12.1.1 Memory Overcommit
On Red Hat Enterprise Linux, memory overcommit feature is working by default. In order to prevent

PostgreSQL instance from being killed because of its large memory usage in case of memory shortage,

the functionality of the memory overcommit should be stopped.

Table 104 Memory over commit settings

Kernel Parameter Default Value Recommended Value

vm.overcommit_memory 0 2

vm.overcommit_ratio 50 99

12.1.2 I/O Scheduler
An example was presented that by changing I/O scheduler to "deadline", the irregularity of

performance was eliminated. In the system, using SSD storage should also consider changing to

"noop".

Example 221 Change the I/O scheduler to noop

As the default I / O scheduler in Red Hat Enterprise Linux 7 has been changed to "deadline", setting

is generally no longer required.

12.1.3 SWAP
 In order to maintain the process in memory as long as possible without swap out, the kernel parameters

vm.swappiness is recommended to be set 5 or less.

cat /sys/block/sda/queue/scheduler

noop [deadline] cfq

grubby --update-kernel=ALL --args="elevator=noop"

258

© 2013-2017 Hewlett-Packard Enterprise.

Table 105 Swap setting

Kernel Parameter Default value Recommended value

vm.swappiness 30 0

12.1.4 Huge Pages
In a large-scale memory environment make the setting to use the Huge Pages. Huge Pages should be

used if possible in the default configuration of PostgreSQL 9.4. For the kernel parameters

vm.nr_hugepages, specify the size larger than the area to be used in shared memory (2 MB units). If

the parameter huge_pages set to "on", when the required memory area is insufficient, an instance

startup becomes an error.

Table 106 Huge Pages settings

Kernel Parameter Default value Recommended Value

vm.nr_hugepages 0 More than shared_buffers + wal_buffers

12.1.5 Semaphore
In systems where the number of simultaneous sessions is more than 1,000, there is a possibility of a

shortage of semaphore set to be saved at instance startup. In the case of expanding the parameter

max_connections, update the kernel parameters kernel.sem.

12.2 Filesystem Settings
PostgreSQL uses the file system as a storage, and it creates a many small files automatically.

Therefore, the performance of the file system will greatly affect the performance of the system. In

Linux environment, Ext4 or XFS (Standard at Red Hat Enterprise Linux 7) is recommended.

12.2.1 When using the ext4 filesystem
As mount options of the file system for the database cluster, specify noatime and nodiratime.

12.2.2 When using the XFS filesystem
As mount options of the file system for the database cluster, specify nobarrier, noatime, noexec and

nodiratime.

259

© 2013-2017 Hewlett-Packard Enterprise.

12.3 Core File Settings
For the analysis of the trouble, core files that were generated at the time of the failure are useful. Here

describes the setting to make PostgreSQL generate core files, using trouble analysis tool of Red Hat

Enterprise Linux.

12.3.1 CORE file output settings
As the size limit of the core file is set to 0 by default, the restriction should be removed.

□ Edit limits.conf file

Add the following entry to the /etc/security/limits.conf file. "postgres" is the PostgreSQL instance

execution user name.

Example 222 core file limit

□ Edit .bashrc file

In the "postgres" user's {HOME}/.bashrc file, add the following entry.

Example 223 user limit

12.3.2 Core administration with ABRT
In the Red Hat Enterprise Linux 6 and later, Auto Bug Reporting Tool (ABRT) which automatically

collect the necessary information for the bug report has been installed. ABRT is running automatically

with standard installation.

□ Kernel parameter settings

In ABRT installed environment, the kernel parameters kernel.core_pattern has been changed to the

following settings.

Example 224 core_pattern kernel parameter value

postgres - core unlimited

ulimit -c unlimited

|/usr/libexec/abrt-hook-ccpp %s %c %p %u %g %t e

260

© 2013-2017 Hewlett-Packard Enterprise.

Therefore, when core file is generated, contents of the file is transferred to ABRT.

□ Directory creation and the output destination setting

Core file is output to the /var/spool/abrt directory by default. To change the directory, modify the

DumpLocation parameters of /etc/abrt/abrt.conf file.

Example 225 Directory creation and the output destination setting

□ ABRT package settings

By default, the Core file for the program that has not been digitally signed will not be generated. In

order to remove this restriction, set the OpenGPGCheck parameters of /etc/abrt/abrt-action-save-

package-data.conf file to "no".

Example 226 Output the core for unsigned programs

□ Other settings

In the /etc/abrt/plugins/CCpp.conf file, specify generation rules and format of the Core file.

Example 227 Other core file settings

mkdir –p /var/crash/abrt

chown abrt:abrt /var/crash/abrt

chmod 755 /var/crash/abrt

cat /etc/abrt/abrt.conf

DumpLocation = /var/crash/abrt -- core output destination

MaxCrashReportsSize = 0 -- maximum core file size to unlimited

cat /etc/abrt/abrt-action-save-package-data.conf

OpenGPGCheck = no

cat /etc/abrt/plugins/CCpp.conf

MakeCompatCore = no

SaveBinaryImage = yes

261

© 2013-2017 Hewlett-Packard Enterprise.

Please refer to the following URL for ABRT details.

https://access.redhat.com/documentation/en-

US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-abrt.html

12.4 User limits
PostgreSQL instances on Linux works generally with the privileges of the Linux user postgres. On

Red Hat Enterprise Linux 6 system where the number of concurrent connections is more than 1,000,

extend the process limit of postgres user. The upper limit of the number of processes is written in

/etc/security/limits.conf file.

Example 228 limits.conf file settings

In Red Hat Enterprise Linux 7, the default value of this limit is changed to 4096, therefore above deal

is no longer required.

12.5 systemd support
In the Red Hat Enterprise Linux 7, systemd is used for service management of the operating system.

In order to automatically start the PostgreSQL instance during the Linux boot, it is necessary to

correspond to systemd.

12.5.1 Service registration
In order to correspond to systemd, create a script, and register to systemd daemon. In the following

example, the service name is set to postgresql-9.6.2.service. It uses systemctl command to register the

service.

postgres soft nproc 1024

postgres hard nproc 1024

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-abrt.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-abrt.html

262

© 2013-2017 Hewlett-Packard Enterprise.

Example 229 systemd registration

The following example is a sample script to be created in the /usr/lib/systemd/system/ directory.

Example 230 systemd script

[Unit]

Description=PostgreSQL 9.6.2 Database Server

After=syslog.target network.target

[Service]

Type=forking

TimeoutSec=120

User=postgres

Environment=PGDATA=/usr/local/pgsql/data

PIDFile=/usr/local/pgsql/data/postmaster.pid

ExecStart=/usr/local/pgsql/bin/pg_ctl start -D "/usr/local/pgsql/data" -l

"/usr/local/pgsql/data/pg_log/startup.log" –w –t ${TimeoutSec}

ExecStop=/usr/local/pgsql/bin/pg_ctl stop -m fast -D "/usr/local/pgsql/data"

ExecReload=/usr/local/pgsql/bin/pg_ctl reload -D "/usr/local/pglsq/data"

[Install]

WantedBy=multi-user.target

vi /usr/lib/systemd/system/postgresql-9.6.2.service

systemctl enable postgresql-9.6.2.service

ln -s '/usr/lib/systemd/system/postgresql-9.6.2.service'

'/etc/systemd/system/multi-user.target.wants/postgresql-9.6.2.service'

systemctl --system daemon-reload

263

© 2013-2017 Hewlett-Packard Enterprise.

12.5.2 Service start and stop
Starting and stopping services are performed by using the systemctl command. Please refer to the

online manual of Red Hat Enterprise Linux for details of systemctl command.

Table 107 Control of services by systemctl command

Operation Command

Start service systemctl start {SERVICENAME}

Stop service systemctl stop {SERVICENAME}

Service status check systemctl status {SERVICENAME}

Restart service systemctl restart {SERVICENAME}

Reload service systemctl reload {SERVICENAME}

264

© 2013-2017 Hewlett-Packard Enterprise.

Example 231 Control of services by systemctl command

Systemctl command manages the state of the service of the started process. If the instance started by

systemctl command is stopped by pg_ctl command, systemd daemon determines that the service is

terminated abnormally.

systemctl start postgresql-9.6.2.service

systemctl status postgresql-9.6.2.service

postgresql-9.6.2.service - PostgreSQL 9.6.2 Database Server

 Loaded: loaded (/usr/lib/systemd/system/postgresql-9.6.2.service; enabled)

 Active: active (running) since Tue 2017-02-11 12:02:00 JST; 5s ago

 Process: 12655 ExecStop=/usr/local/pgsql/bin/pg_ctl stop -m fast -w -D

/home/postgres/data (code=exited, status=1/FAILURE)

 Process: 12661 ExecStart=/usr/local/pgsql/bin/pg_ctl -w start -D

/home/postgres/data -l /home/postgres/data/pg_log/startup.log -w -t

${TimeoutSec} (code=exited, status=0/SUCCESS)

 Main PID: 12663 (postgres)

 CGroup: /system.slice/postgresql-9.6.2.service

 + /usr/local/pgsql/bin/postgres -D /home/postgres/data

 + postgres: logger process

 + postgres: checkpointer process

 + postgres: writer process

 + postgres: wal writer process

 + postgres: autovacuum launcher process

 + postgres: archiver process

 + postgres: stats collector process

Feb 11 12:02:00 rel71-2 systemd[1]: Starting PostgreSQL 9.6.2 Database Server...

Feb 11 12:02:00 rel71-2 systemd[1]: PID file

/home/postgres/data/postmaster.pid ...t.

Feb 11 12:02:00 rel71-2 pg_ctl[12661]: waiting for server to start... stopped

waiting

Feb 11 12:02:00 rel71-2 pg_ctl[12661]: server is still starting up

Feb 11 12:02:00 rel71-2 systemd[1]: Started PostgreSQL 9.6.2 Database Server.

Hint: Some lines were ellipsized, use -l to show in full.

265

© 2013-2017 Hewlett-Packard Enterprise.

12.6 Others

12.6.1 SSH
In the replication environment without replication slot, use "restore_command" parameter of

recovery.conf file in order to eliminate the gaps in the archived log. In this parameter, describe the

command to copy the archive log files of the primary instance, and make the settings so that

PostgreSQL can connect to the primary host using "scp"command whithout password.

12.6.2 Firewall
 If you use a firewall, allow a connection to the local TCP port 5,432 (parameter "port"). The following

example allows a connection to the service postgresql.

Example 232 firewalld setting

12.6.3 SE-Linux
At present, it seems that there is no clear guidance for the combination of SE-Linux and PostgreSQL.

Typically, Permissive mode or Disabled mode is set.

12.6.4 systemd
 In Red Hat Enterprise Linux 7 Update 2, when the user logs off the setting to delete a shared memory

created by the user now the default. In the default state, in order to log off at the same time as

PostgreSQL instance shared memory is deleted, return this setting to the same value as the old version.

You should modify the /etc/systemd/logind.conf file as follows.

Example 233 logind.conf file setting

firewall-cmd --permanent --add-service=postgresql

success

[login]

RemoveIPC=no -- add this line

266

© 2013-2017 Hewlett-Packard Enterprise.

Appendix. Bibliography

Appendix.1 Books
Bellow is the information of the books that would be helpful for PostgreSQL.

Table 108 Books

Book Name Author Publisher

PostgreSQL Replication - Second Edition Hans-Jurgen

Schonig

PACKT

PostgreSQL 9 Administration Cookbook - Second Edition Simon Riggs

Gianni Ciolli

PACKT

Troubleshooting PostgreSQL Hans-Jurgen

Schonig

PACKT

PostgreSQL for Data Architects Jayadevan Maymala PACKT

PostgreSQL Server Programming - Second Edition Usama Dar

Hannu Krosing

PACKT

PostgreSQL Developer's Guide Ahmed, Ibrar

Fayyaz, Asif

PACKT

PostgreSQL Cookbook Chitij Chauhan PACKT

PostgreSQL: Up and Running Regina O. Obe

Leo S. Hsu

O’Reilly

267

© 2013-2017 Hewlett-Packard Enterprise.

Appendix 2. URL
Bellow is the information of the URL that would be helpful for PostgreSQL.

Table 109 URL

Name URL

PostgreSQL Online Documents http://www.postgresql.org/docs/

PostgreSQL JDBC Driver http://jdbc.postgresql.org/

PostgreSQL GitHub https://github.com/postgres/postgres

PostgreSQL Commitfests https://commitfest.postgresql.org/

Michael Paquier - Open source developer

based in Japan

http://michael.otacoo.com/

PostgreSQL 9.5 WAL format https://wiki.postgresql.org/images/a/af/FOSDEM-

2015-New-WAL-format.pdf

EnterpriseDB http://www.enterprisedb.com/

PostgreSQL Internals (Japanese) postgresqlinternals.org/index.php

PostgreSQL Deep Dive (Japanese) http://pgsqldeepdive.blogspot.jp/

PostgreSQL Japan User Group https://www.postgresql.jp/

Configuring and tuning HP ProLiant

Servers for low-latency applications

h10032.www1.hp.com/ctg/Manual/c01804533.pdf

http://www.postgresql.org/docs/
http://jdbc.postgresql.org/
https://github.com/postgres/postgres
https://commitfest.postgresql.org/
http://michael.otacoo.com/
https://wiki.postgresql.org/images/a/af/FOSDEM-2015-New-WAL-format.pdf
https://wiki.postgresql.org/images/a/af/FOSDEM-2015-New-WAL-format.pdf
http://www.enterprisedb.com/
http://pgsqldeepdive.blogspot.jp/
https://www.postgresql.jp/

268

© 2013-2017 Hewlett-Packard Enterprise.

Modification History

Modification History

Version Date Author Description

1.0 16-Jul-2014 Noriyoshi Shinoda Create a first edition. PostgreSQL 9.4 Beta 1

1.0.1

04-Aug-2014 Noriyoshi Shinoda Typo fixed

1.1

16-May-2015 Noriyoshi Shinoda Create a second edition, supports PostgreSQL

9.4 official version

2.1.2 Information added

3.1.3 Fix error about TOAST function

3.3.8 Add archiver process behavior

3.9.1 Add locale function detail

3.10.3 Add log rotation

5.1.4 Add statistics information

5.2.3 Add autovacuum information

5.3.8 Add EXPLAIN detail

6.2.6 Add statistics information

6.3 Move postgres_fdw to (2)

6.4 Add PREPARE statement

12.1.6 Add Semaphore information

12.4 Add user restriction

Add Appendix and URL information

1.1.1

18-May-2015 Noriyoshi Shinoda Typo fixed

1.2

11-Feb-2017 Noriyoshi Shinoda Create the third edition, support

PostgreSQL 9.6 official version.

Create English version.

Unify the installation location to

/usr/local/pgsql

2.1.5 Processes of Windows environment added

2.3.1/2.3.2/2.3.3 Some information added

2.3.7 Stop instance on Windows added

3.3.3 Visibility Map added

3.4.1/3.5.4 Some information added

3.5.5 pg_filenode.map added

269

© 2013-2017 Hewlett-Packard Enterprise.

Modification History (Cont.)

Version Date Author Description

1.2

11-Feb-2017 3.5.4 pg_control detail added

3.10.5 Log file encoding information added

4.1.2 Some information added

4.3.2 Behavior of process termination added

5.2.4 amount of memory use added

5.3.4 Some information added

6.2.7 Partition table with External table added

6.5 INSERT ON CONFLICT added

6.6 TABLESAMPLE added

6.7 Changing table attribute added

6.9 Parallel Query added

7.2 Row Level Security added

8.1.1 Add information for pg_basebackup

8.1.5 pg_rewind added

8.1.6 vacuumdb added

12 Red Hat Enterprise Linux 7 support

12.1.6 Remove cstate setting

Modify Appendix

270

© 2013-2017 Hewlett-Packard Enterprise.

